Publications

Insitute for Artificial Intelligence (KI)

Here you can find all the publications from the Institute for Artificial Intelligence.

Institute Publications

  1. 2024

    1. Asma, Z., Hernández, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024, May). NPCS: Native Provenance Computation for SPARQL. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645557
    2. Blomqvist, E., García-Castro, R., Hernández, D., Hitzler, P., Lindecrantz, M., & Poveda-Villalón, M. (Eds.). (2024). Proceedings of the The 2nd International Workshop on Knowledge Graphs for Sustainability (KG4S 2024) colocated with the 21st Extended Semantic Web Conference (ESWC 2024) (Vol. 3753). CEUR. https://ceur-ws.org/Vol-3753/
    3. Elenter, J., Chamon, L. F. O., & Ribeiro, A. (2024, May). Near-Optimal Solutions of Constrained Learning Problems. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2403.11844
    4. Elshani, D., Dervishaj, A., Hernández, D., Gudmundsson, K., Staab, S., & Wortmann, T. (2024). An Ontology for the Reuse and Tracking of Prefabricated Building Components. Proceedings of the The 2nd International Workshop on Knowledge Graphs for Sustainability (KG4S 2024) Colocated with the 21st Extended Semantic Web Conference (ESWC 2024), 3753, 53–64. https://ceur-ws.org/Vol-3753/paper5.pdf
    5. Errica, F., & Niepert, M. (2024, May). Tractable Probabilistic Graph Representation Learning with Graph-Induced Sum-Product Networks. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2305.10544
    6. Hagnberger, J., Kalimuthu, M., Musekamp, D., & Niepert, M. (2024, May). Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent PDEs. Proceedings of the AI4DifferentialEquations in Science Workshop at ICLR 2024, May 7-11, 2024, Austria.
    7. Liu, A., Niepert, M., & den Broeck, G. V. (2024, May). Image Inpainting via Tractable Steering of Diffusion Models. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7--11, 2024, Austria. https://doi.org/10.48550/arXiv.2401.03349
    8. Qian, C., Manolache, A., Ahmed, K., Zeng, Z., den Broeck, G. V., Niepert, M., & Morris, C. (2024, May). Probabilistically Rewired Message-Passing Neural Networks. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7--11, 2024, Austria. https://doi.org/10.48550/arXiv.2310.02156
    9. Seifer, P., Hernández, D., Lämmel, R., & Staab, S. (2024, May). From Shapes to Shapes: Inferring SHACL Shapes for Results of SPARQL CONSTRUCT Queries. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645550
    10. Tran, H.-C., Nguyen, D. M. H., Nguyen, M.-D., Le, N. H., & T. Nguyen, B. (2024, May). Energy Minimizing-based Token Merging for Accelerating Transformers. Proceedings of Practical ML for Low Resource Settings in Science Workshop at ICLR 2024, May 7-11, 2024, Austria.
    11. Zubaria, A., Hernández, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024, May). NPCS: Native Provenance Computation for SPARQL. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645557
    12. Asma, Z., Hernandez, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024). Code and benchmark for NPCS, a Native Provenance Computation for SPARQL. https://doi.org/10.18419/darus-3973
    13. Ding, Z., Cai, H., Wu, J., Ma, Y., Liao, R., Xiong, B., & Tresp, V. (2024). zrLLM: Zero-Shot Relational Learning on Temporal Knowledge Graphs with Large Language Models. Annual Conference of the North American Chapter of the Association for Computational Linguistics. https://arxiv.org/abs/2311.10112
    14. Hagnberger, J., Kalimuthu, M., Musekamp, D., & Niepert, M. (2024). Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent Parametric Partial Differential Equations. In Proceedings of the 41st International Conference on Machine Learning (ICML 2024). https://arxiv.org/abs/2406.03919
    15. He, Y., Hernandez, D., Nayyeri, M., Xiong, B., Zhu, Y., Kharlamov, E., & Staab, S. (2024). Generating SROI^- Ontologies via Knowledge Graph Query Embedding Learning. https://arxiv.org/abs/2407.09212
    16. Nguyen, D. M. H., Le, A. T., Nguyen, T. Q., Diep, N. T., Nguyen, T., Duong-Tran, D., Peters, J., Shen, L., Niepert, M., & Sonntag, D. (2024). Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model. Proceedings of Machine Learning Research. https://arxiv.org/abs/2407.04489
    17. Nguyen, D. M. H., Lukashina, N., Nguyen, T., Le, A. T., Nguyen, T., Ho, N., Peters, J., Sonntag, D., Zaverkin, V., & Niepert, M. (2024). Structure-Aware E(3)-Invariant Molecular Conformer Aggregation Networks. In Proceedings of the 41st International Conference on Machine Learning (ICML 2024). https://arxiv.org/abs/2402.01975
    18. Pan, J., Nayyeri, M., Li, Y., & Staab, S. (2024). HGE: Embedding Temporal Knowledge Graphs in a Product Space of Heterogeneous Geometric Subspaces. Thirty-Eighth Conference on Artificial Intelligence, AAAI, 2024, Vancouver, Canada, February 22 – February 25, 2024,.
    19. Pan, X., Hernández, D., Seifer, P., Lämmel, R., & Staab, S. (2024). eSPARQL: Representing and Reconciling Agnostic and Atheistic Beliefs in RDF-star Knowledge Graphs. https://arxiv.org/abs/2407.21483
    20. Peng, K., Yin, C., Zheng, J., Liu, R., Schneider, D., Zhang, J., Yang, K., Sarfraz, M. S., Stiefelhagen, R., & Roitberg, A. (2024). Navigating Open Set Scenarios for Skeleton-based Action Recognition. The 38th Annual AAAI Conference on Artificial Intelligence. https://arxiv.org/abs/2312.06330
    21. Potyka, N., Zhu, Y., He, Y., Kharlamov, E., & Staab, S. (2024). Robust Knowledge Extraction from Large Language Models using Social Choice Theory. In Proceedings of the 23rd International Conference on Autonomous Agents and Multi-Agent Systems. https://arxiv.org/abs/2312.14877
    22. Schwindt, S., Meisinger, L., Negreiros, B., Schneider, T., & Nowak, W. (2024). Transfer learning achieves high recall for object classification in fluvial environments with limited data. Geomorphology, 455, 109185. https://doi.org/10.1016/j.geomorph.2024.109185
    23. Seifer, P., Hernández, D., Lämmel, R., & Staab, S. (2024). Code for From Shapes to Shapes. https://doi.org/10.18419/darus-3977
    24. Serra, G., & Niepert, M. (2024). L2XGNN: Learning to Explain Graph Neural Networks. Machine Learning Journal. https://arxiv.org/abs/2209.14402
    25. Tan, Y., Lv, H., Zhou, Z., Guo, W., Xiong, B., Liu, W., Chen, C., Wang, S., & Yang, C. (2024). Logical Relation Modeling and Mining in Hyperbolic Space for Recommendation. The 40th IEEE International Conference on Data Engineering. http://www.cs.emory.edu/~jyang71/files/logirec.pdf
    26. Xiong, B., Nayyeri, M., Luo, L., Wang, Z., Pan, S., & Staab, S. (2024). NestE: Modeling Nested Relational Structures for Knowledge Graph Reasoning. The 38th Annual AAAI Conference on Artificial Intelligence. https://arxiv.org/abs/2312.09219
    27. Zaverkin, V., Holzmüller, D., Christiansen, H., Errica, F., Alesiani, F., Takamoto, M., Niepert, M., & Kästner, J. (2024). Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials. Npj Comput. Mater., 10(1), Article 1. https://doi.org/10.1038/s41524-024-01254-1
  2. 2023

    1. Baier, A., Aspandi, D., & Staab, S. (2023, August). ReLiNet: Stable and Explainable Multistep Prediction with Recurrent Linear Parameter Varying Networks. Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23. https://opencms.uni-stuttgart.de/permalink/7e4a70e2-10ca-11ee-ba91-000e0c3db68b.pdf
    2. Hedeshy, R., Menges, R., & Staab, S. (2023). CNVVE: Dataset and Benchmark for Classifying Non-verbal Voice Expressions. Proc. INTERSPEECH 2023, 1553–1557. https://doi.org/10.21437/Interspeech.2023-201
    3. Liu, A., Niepert, M., & den Broeck, G. V. (2023, May). Image Inpainting via Tractable Steering of Diffusion Models. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7--11, 2024, Austria. https://doi.org/10.48550/arXiv.2401.03349
    4. Baier, A., Aspandi, D., & Staab, S. (2023). Supplements for “ReLiNet: Stable and Explainable Multistep Prediction with Recurrent Linear Parameter Varying Networks”". DaRUS. https://doi.org/10.18419/DARUS-3457
    5. Baier, A., & Frank, D. (2023). deepsysid: System Identification Toolkit for Multistep Prediction using Deep Learning. DaRUS. https://doi.org/10.18419/DARUS-3455
    6. Elshani, D., Hernandez, D., Lombardi, A., Siriwardena, L., Schwinn, T., Fisher, A., Staab, S., Menges, A., & Wortmann, T. (2023). Building Information Validation and Reasoning Using Semantic Web Technologies. In M. Turrin, C. Andriotis, & A. Rafiee (Eds.), Computer-Aided Architectural Design. INTERCONNECTIONS: Co-computing Beyond Boundaries (pp. 470--484). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-37189-9_31
    7. Elshani, D., Lombardi, A., Hernández, D., Staab, S., Fisher, A., & Wortmann, T. (2023). BHoM to bhOWL converter. DaRUS. https://doi.org/10.18419/darus-3364
    8. Galárraga, L., Hernández, D., Katim, A., & Hose, K. (2023). Visualizing How-Provenance Explanations for SPARQL Queries. In Y. Ding, J. Tang, J. F. Sequeda, L. Aroyo, C. Castillo, & G.-J. Houben (Eds.), Companion Proceedings of the ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May 2023 (pp. 212–216). ACM. https://doi.org/10.1145/3543873.3587350
    9. Gregucci, C. (2023). Query Answering over the Polymorphic Web of Data. In C. Pesquita, H. Skaf-Molli, V. Efthymiou, S. Kirrane, A. Ngonga, D. Collarana, R. Cerqueira, M. Alam, C. Trojahn, & S. Hertling (Eds.), The Semantic Web: ESWC 2023 Satellite Events - Hersonissos, Crete, Greece, May 28 - June 1, 2023, Proceedings (Vol. 13998, pp. 255--265). Springer. https://doi.org/10.1007/978-3-031-43458-7_44
    10. Gregucci, C., Nayyeri, M., Hernández, D., & Staab, S. (2023). Link Prediction with Attention Applied on Multiple Knowledge Graph Embedding Models. In Y. Ding, J. Tang, J. F. Sequeda, L. Aroyo, C. Castillo, & G.-J. Houben (Eds.), Proceedings of the ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May 2023 (pp. 2600–2610). ACM. https://doi.org/10.1145/3543507.3583358
    11. He, Y., Nayyeri, M., Xiong, B., Zhu, Y., Kharlamov, E., & Staab, S. (2023). Can Pattern Learning Enhance Complex Logical Query Answering? CEUR Workshop Proceedings. https://hozo.jp/ISWC2023_PD-Industry-proc/ISWC2023_paper_463.pdf
    12. Hosseini, A. S., & Staab, S. (2023). Emotional Framing in the Spreading of False and True Claims. Proceedings of the 15th ACM Web Science Conference 2023, 96--106.
    13. Lu, J., Shen, J., Xiong, B., Ma, W., Staab, S., & Yang, C. (2023). HiPrompt: Few-Shot Biomedical Knowledge Fusion via Hierarchy-Oriented Prompting. The 46th International ACM SIGIR Conference on Research and Development in Information Retrieval 2023. https://arxiv.org/abs/2304.05973
    14. Minh Ho Nguyen, D., Ngoc Pham, T., Tuong Diep, N., Phan, N., Pham, Q., Tong, V., T. Nguyen, B., Hoang Le, N., Ho, N., Xie, P., Sonntag, D., & Niepert, M. (2023). On the Out of Distribution Robustness of Foundation Models in Medical Image Segmentation. Advances in Neural Information Processing Systems (NeurIPS), Workshop on Robustness of Zero/Few-Shot Learning in Foundation Models. https://arxiv.org/pdf/2311.11096.pdf
    15. Minh Ho Nguyen, D., Nguyen, H., N. T. Mai, T., Tri, C., T. Nguyen, B., Ho, N., Swoboda, P., Albarqouni, S., Xie, P., & Sonntag, D. (2023). Joint Self-Supervised Image-Volume Representation Learning with Intra-Inter Contrastive Clustering. Proceedings of the AAAI Conference on Artificial Intelligence. https://ojs.aaai.org/index.php/AAAI/article/view/26687
    16. Minh Ho Nguyen, D., Nguyen, H., T Diep, N., N Pham, T., Cao, T., T Nguyen, B., Swoboda, P., Ho, N., Albarqouni, S., Xie, P., Sonntag, D., & Niepert, M. (2023). LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical Imaging via Second-order Graph Matching. Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS 2023). https://proceedings.neurips.cc/paper_files/paper/2023/file/58cc11cda2a2679e8af5c6317aed0af8-Paper-Conference.pdf
    17. Mjalled, A., Torres, E., & Mönnigmann, M. (2023). Reduced-order modeling framework using two-level neural networks. PAMM, n/a(n/a), Article n/a. https://doi.org/10.1002/pamm.202300061
    18. Monninger, T., Schmidt, J., Rupprecht, J., Raba, D., Jordan, J., Frank, D., Staab, S., & Dietmayer, K. (2023). SCENE: Reasoning about Traffic Scenes using Heterogeneous Graph Neural Networks. IEEE Robotics and Automation Letters, 1–8. https://doi.org/10.1109/LRA.2023.3234771
    19. Monninger, T., Weber, A., & Staab, S. (2023). Semantic Map Learning of Traffic Light to Lane Assignment based on                  Motion Data. 25th IEEE International Conference on Intelligent Transportation                  Systems, ITSC 2022, Macau, China, October 8-12, 2022, 1583--1590. https://doi.org/10.1109/ITSC57777.2023.10422549
    20. Morales-Alvarez, W., Certad, N., Roitberg, A., Stiefelhagen, R., & Olaverri-Monreal, C. (2023). On Transferability of Driver Observation Models from Simulated to Real Environments in Autonomous Cars. 2023 IEEE International Conference on Intelligent Transportation Systems (ITSC).
    21. Nayyeri, M., Wang, Z., Akter, Mst. M., Alam, M. M., Rony, M. R. A. H., Lehmann, J., & Staab, S. (2023). Integrating Knowledge Graph Embeddings and Pre-trained Language Models in Hypercomplex Spaces. In The Semantic Web – ISWC 2023. https://doi.org/10.1007/978-3-031-47240-4_21
    22. Potyka, N., Zhu, Y., He, Y., Kharlamov, E., & Staab, S. (2023). Robust Knowledge Extraction from Large Language Models using Social Choice Theory.
    23. Qian, C., Manolache, A., Ahmed, K., Zeng, Z., den Broeck, G. V., Niepert, M., & Morris, C. (2023). Probabilistic Task-Adaptive Graph Rewiring. ICML 2023 Workshop on Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators. https://openreview.net/forum?id=YsHKrMPHE1
To the top of the page