Publikationen

Institut für Künstliche Intelligenz (KI)

Alle unsere bisherigen Publikationen.

Unsere Publikationen

  1. 2024

    1. Asma, Z., Hernández, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024, Mai). NPCS: Native Provenance Computation for SPARQL. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645557
    2. Asma, Z., Hernández, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024, Mai). NPCS: Native Provenance Computation for SPARQL. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645557
    3. Blomqvist, E., García-Castro, R., Hernández, D., Hitzler, P., Lindecrantz, M., & Poveda-Villalón, M. (Hrsg.). (2024). Proceedings of the The 2nd International Workshop on Knowledge Graphs for Sustainability (KG4S 2024) colocated with the 21st Extended Semantic Web Conference (ESWC 2024) (Bd. 3753). CEUR. https://ceur-ws.org/Vol-3753/
    4. Blomqvist, E., García-Castro, R., Hernández, D., Hitzler, P., Lindecrantz, M., & Poveda-Villalón, M. (Hrsg.). (2024). Proceedings of the The 2nd International Workshop on Knowledge Graphs for Sustainability (KG4S 2024) colocated with the 21st Extended Semantic Web Conference (ESWC 2024) (Bd. 3753). CEUR. https://ceur-ws.org/Vol-3753/
    5. Elenter, J., Chamon, L. F. O., & Ribeiro, A. (2024, Mai). Near-Optimal Solutions of Constrained Learning Problems. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2403.11844
    6. Elenter, J., Chamon, L. F. O., & Ribeiro, A. (2024, Mai). Near-Optimal Solutions of Constrained Learning Problems. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2403.11844
    7. Elshani, D., Dervishaj, A., Hernández, D., Gudmundsson, K., Staab, S., & Wortmann, T. (2024). An Ontology for the Reuse and Tracking of Prefabricated Building Components. Proceedings of the The 2nd International Workshop on Knowledge Graphs for Sustainability (KG4S 2024) colocated with the 21st Extended Semantic Web Conference (ESWC 2024), 3753, 53–64. https://ceur-ws.org/Vol-3753/paper5.pdf
    8. Elshani, D., Dervishaj, A., Hernández, D., Gudmundsson, K., Staab, S., & Wortmann, T. (2024). An Ontology for the Reuse and Tracking of Prefabricated Building Components. Proceedings of the The 2nd International Workshop on Knowledge Graphs for Sustainability (KG4S 2024) colocated with the 21st Extended Semantic Web Conference (ESWC 2024), 3753, 53–64. https://ceur-ws.org/Vol-3753/paper5.pdf
    9. Errica, F., & Niepert, M. (2024, Mai). Tractable Probabilistic Graph Representation Learning with Graph-Induced Sum-Product Networks. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2305.10544
    10. Errica, F., & Niepert, M. (2024, Mai). Tractable Probabilistic Graph Representation Learning with Graph-Induced Sum-Product Networks. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2305.10544
    11. Hagnberger, J., Kalimuthu, M., Musekamp, D., & Niepert, M. (2024, Mai). Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent PDEs. Proceedings of the AI4DifferentialEquations in Science workshop at ICLR 2024, May 7-11, 2024, Austria.
    12. Hagnberger, J., Kalimuthu, M., Musekamp, D., & Niepert, M. (2024, Mai). Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent PDEs. Proceedings of the AI4DifferentialEquations in Science workshop at ICLR 2024, May 7-11, 2024, Austria.
    13. Liu, A., Niepert, M., & den Broeck, G. V. (2024, Mai). Image Inpainting via Tractable Steering of Diffusion Models. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7--11, 2024, Austria. https://doi.org/10.48550/arXiv.2401.03349
    14. Liu, A., Niepert, M., & den Broeck, G. V. (2024, Mai). Image Inpainting via Tractable Steering of Diffusion Models. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2401.03349
    15. Qian, C., Manolache, A., Ahmed, K., Zeng, Z., den Broeck, G. V., Niepert, M., & Morris, C. (2024, Mai). Probabilistically Rewired Message-Passing Neural Networks. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7--11, 2024, Austria. https://doi.org/10.48550/arXiv.2310.02156
    16. Qian, C., Manolache, A., Ahmed, K., Zeng, Z., den Broeck, G. V., Niepert, M., & Morris, C. (2024, Mai). Probabilistically Rewired Message-Passing Neural Networks. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2310.02156
    17. Seifer, P., Hernández, D., Lämmel, R., & Staab, S. (2024, Mai). From Shapes to Shapes: Inferring SHACL Shapes for Results of SPARQL CONSTRUCT Queries. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645550
    18. Seifer, P., Hernández, D., Lämmel, R., & Staab, S. (2024, Mai). From Shapes to Shapes: Inferring SHACL Shapes for Results of SPARQL CONSTRUCT Queries. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645550
    19. Tran, H.-C., Nguyen, D. M. H., Nguyen, M.-D., Le, N. H., & T. Nguyen, B. (2024, Mai). Energy Minimizing-based Token Merging for Accelerating Transformers. Proceedings of Practical ML for Low Resource Settings in Science Workshop at ICLR 2024, May 7-11, 2024, Austria.
    20. Tran, H.-C., Nguyen, D. M. H., Nguyen, M.-D., Le, N. H., & T. Nguyen, B. (2024, Mai). Energy Minimizing-based Token Merging for Accelerating Transformers. Proceedings of Practical ML for Low Resource Settings in Science Workshop at ICLR 2024, May 7-11, 2024, Austria.
    21. Zubaria, A., Hernández, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024, Mai). NPCS: Native Provenance Computation for SPARQL. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645557
    22. Zubaria, A., Hernández, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024, Mai). NPCS: Native Provenance Computation for SPARQL. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645557
    23. Zubaria, A., Hernández, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024, Mai). NPCS: Native Provenance Computation for SPARQL. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645557
    24. Asma, Z., Hernandez, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024). Code and benchmark for NPCS, a Native Provenance Computation for SPARQL. https://doi.org/10.18419/darus-3973
    25. Asma, Z., Hernandez, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024). Code and benchmark for NPCS, a Native Provenance Computation for SPARQL. https://doi.org/10.18419/darus-3973
    26. Ding, Z., Cai, H., Wu, J., Ma, Y., Liao, R., Xiong, B., & Tresp, V. (2024). zrLLM: Zero-Shot Relational Learning on Temporal Knowledge Graphs with Large Language Models. Annual Conference of the North American Chapter of the Association for Computational Linguistics. https://arxiv.org/abs/2311.10112
    27. Hagnberger, J., Kalimuthu, M., Musekamp, D., & Niepert, M. (2024). Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent Parametric Partial Differential Equations. In Proceedings of the 41st International Conference on Machine Learning (ICML 2024). https://arxiv.org/abs/2406.03919
    28. Hagnberger, J., Kalimuthu, M., Musekamp, D., & Niepert, M. (2024). Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent Parametric Partial Differential Equations. In Proceedings of the 41st International Conference on Machine Learning (ICML 2024). https://arxiv.org/abs/2406.03919
    29. He, Y., Hernandez, D., Nayyeri, M., Xiong, B., Zhu, Y., Kharlamov, E., & Staab, S. (2024). Generating SROI^- Ontologies via Knowledge Graph Query Embedding Learning. https://arxiv.org/abs/2407.09212
    30. He, Y., Hernandez, D., Nayyeri, M., Xiong, B., Zhu, Y., Kharlamov, E., & Staab, S. (2024). Generating SROI^- Ontologies via Knowledge Graph Query Embedding Learning. https://arxiv.org/abs/2407.09212
    31. He, Y., Hernandez, D., Nayyeri, M., Xiong, B., Zhu, Y., Kharlamov, E., & Staab, S. (2024). Generating SROI^- Ontologies via Knowledge Graph Query Embedding Learning. https://arxiv.org/abs/2407.09212
    32. Nguyen, D. M. H., Le, A. T., Nguyen, T. Q., Diep, N. T., Nguyen, T., Duong-Tran, D., Peters, J., Shen, L., Niepert, M., & Sonntag, D. (2024). Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model. Proceedings of Machine Learning Research. https://arxiv.org/abs/2407.04489
    33. Nguyen, D. M. H., Le, A. T., Nguyen, T. Q., Diep, N. T., Nguyen, T., Duong-Tran, D., Peters, J., Shen, L., Niepert, M., & Sonntag, D. (2024). Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model. Proceedings of Machine Learning Research. https://arxiv.org/abs/2407.04489
    34. Nguyen, D. M. H., Lukashina, N., Nguyen, T., Le, A. T., Nguyen, T., Ho, N., Peters, J., Sonntag, D., Zaverkin, V., & Niepert, M. (2024). Structure-Aware E(3)-Invariant Molecular Conformer Aggregation Networks. In Proceedings of the 41st International Conference on Machine Learning (ICML 2024). https://arxiv.org/abs/2402.01975
    35. Nguyen, D. M. H., Lukashina, N., Nguyen, T., Le, A. T., Nguyen, T., Ho, N., Peters, J., Sonntag, D., Zaverkin, V., & Niepert, M. (2024). Structure-Aware E(3)-Invariant Molecular Conformer Aggregation Networks. In Proceedings of the 41st International Conference on Machine Learning (ICML 2024). https://arxiv.org/abs/2402.01975
    36. Pan, J., Nayyeri, M., Li, Y., & Staab, S. (2024). HGE: Embedding Temporal Knowledge Graphs in a Product Space of Heterogeneous Geometric Subspaces. Thirty-eighth Conference on Artificial Intelligence, AAAI, 2024, Vancouver, Canada, February 22 – February 25, 2024,.
    37. Pan, J., Nayyeri, M., Li, Y., & Staab, S. (2024). HGE: Embedding Temporal Knowledge Graphs in a Product Space of Heterogeneous Geometric Subspaces. Thirty-eighth Conference on Artificial Intelligence, AAAI, 2024, Vancouver, Canada, February 22 – February 25, 2024,.
    38. Pan, X., Hernández, D., Seifer, P., Lämmel, R., & Staab, S. (2024). eSPARQL: Representing and Reconciling Agnostic and Atheistic Beliefs in RDF-star Knowledge Graphs. https://arxiv.org/abs/2407.21483
    39. Pan, X., Hernández, D., Seifer, P., Lämmel, R., & Staab, S. (2024). eSPARQL: Representing and Reconciling Agnostic and Atheistic Beliefs in RDF-star Knowledge Graphs. https://arxiv.org/abs/2407.21483
    40. Pan, X., Hernández, D., Seifer, P., Lämmel, R., & Staab, S. (2024). eSPARQL: Representing and Reconciling Agnostic and Atheistic Beliefs in RDF-star Knowledge Graphs. https://arxiv.org/abs/2407.21483
    41. Peng, K., Yin, C., Zheng, J., Liu, R., Schneider, D., Zhang, J., Yang, K., Sarfraz, M. S., Stiefelhagen, R., & Roitberg, A. (2024). Navigating Open Set Scenarios for Skeleton-based Action Recognition. The 38th Annual AAAI Conference on Artificial Intelligence. https://arxiv.org/abs/2312.06330
    42. Peng, K., Yin, C., Zheng, J., Liu, R., Schneider, D., Zhang, J., Yang, K., Sarfraz, M. S., Stiefelhagen, R., & Roitberg, A. (2024). Navigating Open Set Scenarios for Skeleton-based Action Recognition. The 38th Annual AAAI Conference on Artificial Intelligence. https://arxiv.org/abs/2312.06330
    43. Potyka, N., Zhu, Y., He, Y., Kharlamov, E., & Staab, S. (2024). Robust Knowledge Extraction from Large Language Models using Social Choice Theory. In Proceedings of the 23rd International Conference on Autonomous Agents and Multi-Agent Systems. https://arxiv.org/abs/2312.14877
    44. Potyka, N., Zhu, Y., He, Y., Kharlamov, E., & Staab, S. (2024). Robust Knowledge Extraction from Large Language Models using Social Choice Theory. In Proceedings of the 23rd International Conference on Autonomous Agents and Multi-Agent Systems. https://arxiv.org/abs/2312.14877
    45. Potyka, N., Zhu, Y., He, Y., Kharlamov, E., & Staab, S. (2024). Robust Knowledge Extraction from Large Language Models using Social Choice Theory. The 23rd International Conference on Autonomous Agents and Multi-Agent Systems. https://arxiv.org/abs/2312.14877
    46. Schwindt, S., Meisinger, L., Negreiros, B., Schneider, T., & Nowak, W. (2024). Transfer learning achieves high recall for object classification in fluvial environments with limited data. Geomorphology, 455, 109185. https://doi.org/10.1016/j.geomorph.2024.109185
    47. Seifer, P., Hernández, D., Lämmel, R., & Staab, S. (2024). From Shapes to Shapes: Inferring SHACL Shapes for Results of SPARQL CONSTRUCT Queries. Proceedings of the ACM Web Conference 2024, WWW 2024, Singapore, 13 - 17 May 2024.
    48. Seifer, P., Hernández, D., Lämmel, R., & Staab, S. (2024). From Shapes to Shapes: Inferring SHACL Shapes for Results of SPARQL CONSTRUCT Queries. WWW ’24: The ACM Web Conference 2024 Proceedings. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645550
    49. Seifer, P., Hernández, D., Lämmel, R., & Staab, S. (2024). Code for From Shapes to Shapes. https://doi.org/10.18419/darus-3977
    50. Serra, G., & Niepert, M. (2024). L2XGNN: Learning to Explain Graph Neural Networks. Machine Learning Journal. https://arxiv.org/abs/2209.14402
Zum Seitenanfang