Publikationen

Institut für Künstliche Intelligenz (KI)

Alle unsere bisherigen Publikationen.

Unsere Publikationen

  1. 2024

    1. He, Y., Hernandez, D., Nayyeri, M., Xiong, B., Zhu, Y., Kharlamov, E., & Staab, S. (2024). Generating SROI- Ontologies via Knowledge Graph Query Embedding Learning. In ECAI 2024 (Bd. 392, S. 4279–4286). IOS Press. https://doi.org/10.3233/FAIA241002
    2. He, Y., Hernandez, D., Nayyeri, M., Xiong, B., Zhu, Y., Kharlamov, E., & Staab, S. (2024). Generating SROI- Ontologies via Knowledge Graph Query Embedding Learning. In ECAI 2024 (Bd. 392, S. 4279–4286). IOS Press. https://doi.org/10.3233/FAIA241002
    3. Asma, Z., Hernández, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024, Mai). NPCS: Native Provenance Computation for SPARQL. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645557
    4. Asma, Z., Hernández, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024, Mai). NPCS: Native Provenance Computation for SPARQL. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645557
    5. Blomqvist, E., García-Castro, R., Hernández, D., Hitzler, P., Lindecrantz, M., & Poveda-Villalón, M. (Hrsg.). (2024). Proceedings of the The 2nd International Workshop on Knowledge Graphs for Sustainability (KG4S 2024) colocated with the 21st Extended Semantic Web Conference (ESWC 2024) (Bd. 3753). Knowledge Graphs for Sustainability 2024, Hersonissos, Greece, May 27th, 2024. CEUR. https://ceur-ws.org/Vol-3753/
    6. Blomqvist, E., García-Castro, R., Hernández, D., Hitzler, P., Lindecrantz, M., & Poveda-Villalón, M. (Hrsg.). (2024). Proceedings of the The 2nd International Workshop on Knowledge Graphs for Sustainability (KG4S 2024) colocated with the 21st Extended Semantic Web Conference (ESWC 2024) (Bd. 3753). Knowledge Graphs for Sustainability 2024, Hersonissos, Greece, May 27th, 2024. CEUR. https://ceur-ws.org/Vol-3753/
    7. Elenter, J., Chamon, L. F. O., & Ribeiro, A. (2024, Mai). Near-Optimal Solutions of Constrained Learning Problems. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2403.11844
    8. Elenter, J., Chamon, L. F. O., & Ribeiro, A. (2024, Mai). Near-Optimal Solutions of Constrained Learning Problems. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2403.11844
    9. Elshani, D., Dervishaj, A., Hernández, D., Gudmundsson, K., Staab, S., & Wortmann, T. (2024). An Ontology for the Reuse and Tracking of Prefabricated Building Components. Proceedings of the The 2nd International Workshop on Knowledge Graphs for Sustainability (KG4S 2024) colocated with the 21st Extended Semantic Web Conference (ESWC 2024), 3753, 53–64. https://ceur-ws.org/Vol-3753/paper5.pdf
    10. Elshani, D., Dervishaj, A., Hernández, D., Gudmundsson, K., Staab, S., & Wortmann, T. (2024). An Ontology for the Reuse and Tracking of Prefabricated Building Components. Proceedings of the The 2nd International Workshop on Knowledge Graphs for Sustainability (KG4S 2024) colocated with the 21st Extended Semantic Web Conference (ESWC 2024), 3753, 53–64. https://ceur-ws.org/Vol-3753/paper5.pdf
    11. Errica, F., & Niepert, M. (2024, Mai). Tractable Probabilistic Graph Representation Learning with Graph-Induced Sum-Product Networks. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2305.10544
    12. Errica, F., & Niepert, M. (2024, Mai). Tractable Probabilistic Graph Representation Learning with Graph-Induced Sum-Product Networks. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2305.10544
    13. Hagnberger, J., Kalimuthu, M., Musekamp, D., & Niepert, M. (2024, Mai). Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent PDEs. Proceedings of the AI4DifferentialEquations in Science workshop at ICLR 2024, May 7-11, 2024, Austria.
    14. Hagnberger, J., Kalimuthu, M., Musekamp, D., & Niepert, M. (2024, Mai). Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent PDEs. Proceedings of the AI4DifferentialEquations in Science workshop at ICLR 2024, May 7-11, 2024, Austria.
    15. Liu, A., Niepert, M., & den Broeck, G. V. (2024, Mai). Image Inpainting via Tractable Steering of Diffusion Models. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7--11, 2024, Austria. https://doi.org/10.48550/arXiv.2401.03349
    16. Liu, A., Niepert, M., & den Broeck, G. V. (2024, Mai). Image Inpainting via Tractable Steering of Diffusion Models. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2401.03349
    17. Qian, C., Manolache, A., Ahmed, K., Zeng, Z., den Broeck, G. V., Niepert, M., & Morris, C. (2024, Mai). Probabilistically Rewired Message-Passing Neural Networks. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7--11, 2024, Austria. https://doi.org/10.48550/arXiv.2310.02156
    18. Qian, C., Manolache, A., Ahmed, K., Zeng, Z., den Broeck, G. V., Niepert, M., & Morris, C. (2024, Mai). Probabilistically Rewired Message-Passing Neural Networks. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2310.02156
    19. Seifer, P., Hernández, D., Lämmel, R., & Staab, S. (2024, Mai). From Shapes to Shapes: Inferring SHACL Shapes for Results of SPARQL CONSTRUCT Queries. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645550
    20. Seifer, P., Hernández, D., Lämmel, R., & Staab, S. (2024, Mai). From Shapes to Shapes: Inferring SHACL Shapes for Results of SPARQL CONSTRUCT Queries. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645550
    21. Tran, H.-C., Nguyen, D. M. H., Nguyen, M.-D., Le, N. H., & T. Nguyen, B. (2024, Mai). Energy Minimizing-based Token Merging for Accelerating Transformers. Proceedings of Practical ML for Low Resource Settings in Science Workshop at ICLR 2024, May 7-11, 2024, Austria.
    22. Tran, H.-C., Nguyen, D. M. H., Nguyen, M.-D., Le, N. H., & T. Nguyen, B. (2024, Mai). Energy Minimizing-based Token Merging for Accelerating Transformers. Proceedings of Practical ML for Low Resource Settings in Science Workshop at ICLR 2024, May 7-11, 2024, Austria.
    23. Zubaria, A., Hernández, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024, Mai). NPCS: Native Provenance Computation for SPARQL. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645557
    24. Zubaria, A., Hernández, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024, Mai). NPCS: Native Provenance Computation for SPARQL. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645557
    25. Zubaria, A., Hernández, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024, Mai). NPCS: Native Provenance Computation for SPARQL. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645557
    26. "Hosseini, A. S., & "Staab, S. (2024). Disambiguating Emotional Connotations of Words Using Contextualized Word Representations.
    27. "Hosseini, A. S., & "Staab, S. (2024). Disambiguating Emotional Connotations of Words Using Contextualized Word Representations. https://doi.org/10.18653/v1/2024.starsem-1.21
    28. Asma, Z., Hernandez, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024). Code and benchmark for NPCS, a Native Provenance Computation for SPARQL. https://doi.org/10.18419/darus-3973
    29. Asma, Z., Hernandez, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024). Code and benchmark for NPCS, a Native Provenance Computation for SPARQL. https://doi.org/10.18419/darus-3973
    30. Crum, E., Santis, A. D., Ovide, M., Pan, J., Pisu, A., Lazzari, N., & Rudolph, S. (2024). Enriching Ontologies with Disjointness Axioms using Large Language Models. International Semantic Web Conference 2024. https://doi.org/10.48550/arXiv.2410.03235
    31. Crum, E., Santis, A. D., Ovide, M., Pan, J., Pisu, A., Lazzari, N., & Rudolph, S. (2024). Enriching Ontologies with Disjointness Axioms using Large Language Models. International Semantic Web Conference 2024. https://doi.org/10.48550/arXiv.2410.03235
    32. Das, A., Fathallah, N., & Obretincheva, N. (2024). Navigating Nulls, Numbers and Numerous Entities: Robust Knowledge Base Construction from Large Language Models. In Knowledge Base Construction from Pre-trained Language Models Challenge Workshop, ISWC’24.
    33. Das, A., Fathallah, N., & Obretincheva, N. (2024). Navigating Nulls, Numbers and Numerous Entities: Robust Knowledge Base Construction from Large Language Models. In Knowledge Base Construction from Pre-trained Language Models Challenge Workshop, ISWC’24.
    34. Ding, Z., Cai, H., Wu, J., Ma, Y., Liao, R., Xiong, B., & Tresp, V. (2024). zrLLM: Zero-Shot Relational Learning on Temporal Knowledge Graphs with Large Language Models. Annual Conference of the North American Chapter of the Association for Computational Linguistics. https://arxiv.org/abs/2311.10112
    35. Fathallah, N., Bhole, M., & Staab, S. (2024). Empowering the Deaf and Hard of Hearing Community: Improving Video Captions with Large Language Models. In In Proceedings of the 11th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion.
    36. Fathallah, N., Bhole, M., & Staab, S. (2024). Empowering the Deaf and Hard of Hearing Community: Improving Video Captions with Large Language Models. In In Proceedings of the 11th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion.
    37. Fathallah, N., Das, A., De Giorgis, G., Poltronieri, A., Haase, P., & Kovriguina, L. (2024). NeOn-GPT: A Large Language Model-Powered Pipeline for Ontology Learning. Special Track on Large Language Models for Knowledge Engineering, Extended Semantic Web Conference, 2024. (ESWC 2024). https://doi.org/10.5281/ZENODO.11221930
    38. Fathallah, N., Staab, S., & Algergawy, A. (2024). LLMs4Life: Large language models for ontology learning in life sciences. In In Proceedings of the ELMKE Workshop on Evaluation of Language Models in Knowledge Engineering co-located with EKAW-24 (24th International Conference on Knowledge Engineering and Knowledge Management).
    39. Fathallah, N., Staab, S., & Algergawy, A. (2024). LLMs4Life: Large language models for ontology learning in life sciences. In In Proceedings of the ELMKE Workshop on Evaluation of Language Models in Knowledge Engineering co-located with EKAW-24 (24th International Conference on Knowledge Engineering and Knowledge Management).
    40. Hagnberger, J., Kalimuthu, M., Musekamp, D., & Niepert, M. (2024). Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent Parametric Partial Differential Equations. In Proceedings of the 41st International Conference on Machine Learning (ICML 2024). https://arxiv.org/abs/2406.03919
    41. Hagnberger, J., Kalimuthu, M., Musekamp, D., & Niepert, M. (2024). Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent Parametric Partial Differential Equations. In Proceedings of the 41st International Conference on Machine Learning (ICML 2024). https://arxiv.org/abs/2406.03919
    42. He, Y., Hernandez, D., Nayyeri, M., Xiong, B., Zhu, Y., Kharlamov, E., & Staab, S. (2024). Generating SROI^- Ontologies via Knowledge Graph Query Embedding Learning. https://arxiv.org/abs/2407.09212
    43. He, Y., Hernandez, D., Nayyeri, M., Xiong, B., Zhu, Y., Kharlamov, E., & Staab, S. (2024). Generating SROI^- Ontologies via Knowledge Graph Query Embedding Learning. https://arxiv.org/abs/2407.09212
    44. He, Y., Hernandez, D., Nayyeri, M., Xiong, B., Zhu, Y., Kharlamov, E., & Staab, S. (2024). Generating SROI^- Ontologies via Knowledge Graph Query Embedding Learning. https://arxiv.org/abs/2407.09212
    45. Hedeshy, R., Menges, R., & Staab, S. (2024). Raw audio samples of the CNVVE dataset. DaRUS. https://doi.org/10.18419/DARUS-3897
    46. Hedeshy, R., Menges, R., & Staab, S. (2024). CNVVE Dataset clean audio samples. DaRUS. https://doi.org/10.18419/DARUS-3898
    47. Hedeshy, R., Menges, R., & Staab, S. (2024). Raw audio samples of the CNVVE dataset. DaRUS. https://doi.org/10.18419/DARUS-3897
    48. Hedeshy, R., Menges, R., & Staab, S. (2024). CNVVE Dataset clean audio samples. DaRUS. https://doi.org/10.18419/DARUS-3898
    49. Jalali Farahani, F., Hanke, S., Dima, C., Heiberger, R. H., & Staab, S. (2024). Who is targeted? Detecting social group mentions in online political discussions. Companion Publication of the 16th ACM Web Science Conference, 24–25. https://doi.org/10.1145/3630744.3658412
    50. Jalali Farahani, F., Hanke, S., Dima, C., Heiberger, R. H., & Staab, S. (2024). Who is targeted? Detecting social group mentions in online political discussions. Companion Publication of the 16th ACM Web Science Conference, 24–25. https://doi.org/10.1145/3630744.3658412
Zum Seitenanfang