Asma, Z., Hernández, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024, May). NPCS: Native Provenance Computation for SPARQL.
Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore.
https://doi.org/10.1145/3589334.3645557
BibTeX
Blomqvist, E., García-Castro, R., Hernández, D., Hitzler, P., Lindecrantz, M., & Poveda-Villalón, M. (Eds.). (2024).
Proceedings of the The 2nd International Workshop on Knowledge Graphs for Sustainability (KG4S 2024)
colocated with the 21st Extended Semantic Web Conference (ESWC 2024) (Vol. 3753). CEUR.
https://ceur-ws.org/Vol-3753/
BibTeX
Elenter, J., Chamon, L. F. O., & Ribeiro, A. (2024, May). Near-Optimal Solutions of Constrained Learning Problems.
Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria.
https://doi.org/10.48550/arXiv.2403.11844
BibTeX
Elshani, D., Dervishaj, A., Hernández, D., Gudmundsson, K., Staab, S., & Wortmann, T. (2024). An Ontology for the Reuse and Tracking of Prefabricated Building Components.
Proceedings of the The 2nd International Workshop on Knowledge Graphs for Sustainability (KG4S 2024) Colocated with the 21st Extended Semantic Web Conference (ESWC 2024),
3753, 53–64.
https://ceur-ws.org/Vol-3753/paper5.pdf
BibTeX
Errica, F., & Niepert, M. (2024, May). Tractable Probabilistic Graph Representation Learning with Graph-Induced Sum-Product Networks.
Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria.
https://doi.org/10.48550/arXiv.2305.10544
BibTeX
Hagnberger, J., Kalimuthu, M., Musekamp, D., & Niepert, M. (2024, May). Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent PDEs. Proceedings of the AI4DifferentialEquations in Science Workshop at ICLR 2024, May 7-11, 2024, Austria.
BibTeX
Liu, A., Niepert, M., & den Broeck, G. V. (2024, May). Image Inpainting via Tractable Steering of Diffusion Models.
Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7--11, 2024, Austria.
https://doi.org/10.48550/arXiv.2401.03349
BibTeX
Qian, C., Manolache, A., Ahmed, K., Zeng, Z., den Broeck, G. V., Niepert, M., & Morris, C. (2024, May). Probabilistically Rewired Message-Passing Neural Networks.
Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7--11, 2024, Austria.
https://doi.org/10.48550/arXiv.2310.02156
BibTeX
Seifer, P., Hernández, D., Lämmel, R., & Staab, S. (2024, May). From Shapes to Shapes: Inferring SHACL Shapes for Results of SPARQL CONSTRUCT Queries.
Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore.
https://doi.org/10.1145/3589334.3645550
BibTeX
Tran, H.-C., Nguyen, D. M. H., Nguyen, M.-D., Le, N. H., & T. Nguyen, B. (2024, May). Energy Minimizing-based Token Merging for Accelerating Transformers. Proceedings of Practical ML for Low Resource Settings in Science Workshop at ICLR 2024, May 7-11, 2024, Austria.
BibTeX
Zubaria, A., Hernández, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024, May). NPCS: Native Provenance Computation for SPARQL.
Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore.
https://doi.org/10.1145/3589334.3645557
BibTeX
Asma, Z., Hernandez, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024).
Code and benchmark for NPCS, a Native Provenance Computation for SPARQL.
https://doi.org/10.18419/darus-3973
BibTeX
Ding, Z., Cai, H., Wu, J., Ma, Y., Liao, R., Xiong, B., & Tresp, V. (2024). zrLLM: Zero-Shot Relational Learning on Temporal Knowledge Graphs with Large Language Models.
Annual Conference of the North American Chapter of the Association for Computational Linguistics.
https://arxiv.org/abs/2311.10112
BibTeX
Hagnberger, J., Kalimuthu, M., Musekamp, D., & Niepert, M. (2024). Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent Parametric Partial Differential Equations.
In Proceedings of the 41st International Conference on Machine Learning (ICML 2024).
https://arxiv.org/abs/2406.03919
BibTeX
He, Y., Hernandez, D., Nayyeri, M., Xiong, B., Zhu, Y., Kharlamov, E., & Staab, S. (2024).
Generating SROI^- Ontologies via Knowledge Graph Query Embedding Learning.
https://arxiv.org/abs/2407.09212
BibTeX
Nguyen, D. M. H., Le, A. T., Nguyen, T. Q., Diep, N. T., Nguyen, T., Duong-Tran, D., Peters, J., Shen, L., Niepert, M., & Sonntag, D. (2024). Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model.
Proceedings of Machine Learning Research.
https://arxiv.org/abs/2407.04489
BibTeX
Nguyen, D. M. H., Lukashina, N., Nguyen, T., Le, A. T., Nguyen, T., Ho, N., Peters, J., Sonntag, D., Zaverkin, V., & Niepert, M. (2024). Structure-Aware E(3)-Invariant Molecular Conformer Aggregation Networks.
In Proceedings of the 41st International Conference on Machine Learning (ICML 2024).
https://arxiv.org/abs/2402.01975
BibTeX
Pan, J., Nayyeri, M., Li, Y., & Staab, S. (2024). HGE: Embedding Temporal Knowledge Graphs in a Product Space of Heterogeneous Geometric Subspaces. Thirty-Eighth Conference on Artificial Intelligence, AAAI, 2024, Vancouver, Canada, February 22 – February 25, 2024,.
BibTeX
Pan, X., Hernández, D., Seifer, P., Lämmel, R., & Staab, S. (2024).
eSPARQL: Representing and Reconciling Agnostic and Atheistic Beliefs in RDF-star Knowledge Graphs.
https://arxiv.org/abs/2407.21483
BibTeX
Peng, K., Yin, C., Zheng, J., Liu, R., Schneider, D., Zhang, J., Yang, K., Sarfraz, M. S., Stiefelhagen, R., & Roitberg, A. (2024). Navigating Open Set Scenarios for Skeleton-based Action Recognition.
The 38th Annual AAAI Conference on Artificial Intelligence.
https://arxiv.org/abs/2312.06330
BibTeX
Potyka, N., Zhu, Y., He, Y., Kharlamov, E., & Staab, S. (2024). Robust Knowledge Extraction from Large Language Models using Social Choice Theory.
In Proceedings of the 23rd International Conference on Autonomous Agents and Multi-Agent Systems.
https://arxiv.org/abs/2312.14877
BibTeX
Schwindt, S., Meisinger, L., Negreiros, B., Schneider, T., & Nowak, W. (2024). Transfer learning achieves high recall for object classification in fluvial environments with limited data.
Geomorphology,
455, 109185.
https://doi.org/10.1016/j.geomorph.2024.109185
BibTeX
BibTeX
BibTeX
Tan, Y., Lv, H., Zhou, Z., Guo, W., Xiong, B., Liu, W., Chen, C., Wang, S., & Yang, C. (2024). Logical Relation Modeling and Mining in Hyperbolic Space for Recommendation.
The 40th IEEE International Conference on Data Engineering.
http://www.cs.emory.edu/~jyang71/files/logirec.pdf
BibTeX
Xiong, B., Nayyeri, M., Luo, L., Wang, Z., Pan, S., & Staab, S. (2024). NestE: Modeling Nested Relational Structures for Knowledge Graph Reasoning.
The 38th Annual AAAI Conference on Artificial Intelligence.
https://arxiv.org/abs/2312.09219
BibTeX
Zaverkin, V., Holzmüller, D., Christiansen, H., Errica, F., Alesiani, F., Takamoto, M., Niepert, M., & Kästner, J. (2024). Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials.
Npj Comput. Mater.,
10(1), Article 1.
https://doi.org/10.1038/s41524-024-01254-1
BibTeX