Research

Institute for Artificial Intelligence (KI)

General overview of the research scope of the Institute for Artificial Intelligence.

Area

Research Area Department
Combining discrete probability distributions and Deep Learning AC, MLS
Computer Vision ISP
Constrained Learning IS
Explainable AI AC, MLS
Generative Modeling AC, MLS
Geometric Deep Learning AC, MLS
Graph Machine Learning AC, MLS
Graph Neural Networks AC, MLS, IS
Intelligent Human-Computer Interaction AC
Intelligent Vehicles AC, ISP
Knowledge Graphs AC, MLS
Machine Learning and Simulation AC, MLS, IS
Machine Learning for Natural Language Processing AC, MLS
Machine Learning and Combinatorial Optimization MLS
Multimodal Human Acitivty Analysis ISP
Open-Set-, Open-Domain- and Uncertainty-aware Recognition ISP
Optimization IS
Physics-based Machine Learning AC, MLS, IS
Reflection on Web, AI and Society AC
Reinforcement Learning IS
Resource- and Data-efficient Recognition ISP
Robust Machine Learning IS
Semantic Digital Twins AC
Signal Processing IS
Time Series Analysis AC

Applications

Area Department
Applications for Health Monitoring, Physiological Analysis and Medical Diagnostics ISP
Applications of Foundation Models AC
Assistive Systems and Robotics AC, ISP
Knowledge Graphs and Semantic Digital Twins for Architecture, Engineering, and Construction AC
Knowledge Graphs and Semantic Digital Twins for Engineering Design and Production AC
Knowledge Graphs for Intelligent Vehicles AC
Machine Learning for (Bio-) Medical Applications MLS
Machine Learning for Molecules (Property Prediction, ML for PDEs) MLS
ML for Physical Systems AC, MLS
NLP for Biomedical Applications AC

Institute Publications

  1. 2024

    1. He, Y., Hernandez, D., Nayyeri, M., Xiong, B., Zhu, Y., Kharlamov, E., & Staab, S. (2024). Generating SROI- Ontologies via Knowledge Graph Query Embedding Learning. In ECAI 2024 (Vol. 392, pp. 4279–4286). IOS Press. https://doi.org/10.3233/FAIA241002
    2. Asma, Z., Hernández, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024, May). NPCS: Native Provenance Computation for SPARQL. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645557
    3. Blomqvist, E., García-Castro, R., Hernández, D., Hitzler, P., Lindecrantz, M., & Poveda-Villalón, M. (Eds.). (2024). Proceedings of the The 2nd International Workshop on Knowledge Graphs for Sustainability (KG4S 2024) colocated with the 21st Extended Semantic Web Conference (ESWC 2024) (Vol. 3753). Knowledge Graphs for Sustainability 2024, Hersonissos, Greece, May 27th, 2024. CEUR. https://ceur-ws.org/Vol-3753/
    4. Elenter, J., Chamon, L. F. O., & Ribeiro, A. (2024, May). Near-Optimal Solutions of Constrained Learning Problems. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2403.11844
    5. Elshani, D., Dervishaj, A., Hernández, D., Gudmundsson, K., Staab, S., & Wortmann, T. (2024). An Ontology for the Reuse and Tracking of Prefabricated Building Components. Proceedings of the The 2nd International Workshop on Knowledge Graphs for Sustainability (KG4S 2024) Colocated with the 21st Extended Semantic Web Conference (ESWC 2024), 3753, 53–64. https://ceur-ws.org/Vol-3753/paper5.pdf
    6. Errica, F., & Niepert, M. (2024, May). Tractable Probabilistic Graph Representation Learning with Graph-Induced Sum-Product Networks. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2305.10544
    7. Hagnberger, J., Kalimuthu, M., Musekamp, D., & Niepert, M. (2024, May). Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent PDEs. Proceedings of the AI4DifferentialEquations in Science Workshop at ICLR 2024, May 7-11, 2024, Austria.
    8. Liu, A., Niepert, M., & den Broeck, G. V. (2024, May). Image Inpainting via Tractable Steering of Diffusion Models. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7--11, 2024, Austria. https://doi.org/10.48550/arXiv.2401.03349
    9. Qian, C., Manolache, A., Ahmed, K., Zeng, Z., den Broeck, G. V., Niepert, M., & Morris, C. (2024, May). Probabilistically Rewired Message-Passing Neural Networks. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7--11, 2024, Austria. https://doi.org/10.48550/arXiv.2310.02156
    10. Seifer, P., Hernández, D., Lämmel, R., & Staab, S. (2024, May). From Shapes to Shapes: Inferring SHACL Shapes for Results of SPARQL CONSTRUCT Queries. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645550
    11. Tran, H.-C., Nguyen, D. M. H., Nguyen, M.-D., Le, N. H., & T. Nguyen, B. (2024, May). Energy Minimizing-based Token Merging for Accelerating Transformers. Proceedings of Practical ML for Low Resource Settings in Science Workshop at ICLR 2024, May 7-11, 2024, Austria.
    12. Zubaria, A., Hernández, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024, May). NPCS: Native Provenance Computation for SPARQL. Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore. WWW ’24, Singapore. https://doi.org/10.1145/3589334.3645557
    13. "Hosseini, A. S., & "Staab, S. (2024). Disambiguating Emotional Connotations of Words Using Contextualized Word Representations.
    14. Asma, Z., Hernandez, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024). Code and benchmark for NPCS, a Native Provenance Computation for SPARQL. https://doi.org/10.18419/darus-3973
    15. Crum, E., Santis, A. D., Ovide, M., Pan, J., Pisu, A., Lazzari, N., & Rudolph, S. (2024). Enriching Ontologies with Disjointness Axioms using Large Language Models. International Semantic Web Conference 2024. https://doi.org/10.48550/arXiv.2410.03235
    16. Das, A., Fathallah, N., & Obretincheva, N. (2024). Navigating Nulls, Numbers and Numerous Entities: Robust Knowledge Base Construction from Large Language Models. In Knowledge Base Construction from Pre-trained Language Models Challenge Workshop, ISWC’24.
    17. Ding, Z., Cai, H., Wu, J., Ma, Y., Liao, R., Xiong, B., & Tresp, V. (2024). zrLLM: Zero-Shot Relational Learning on Temporal Knowledge Graphs with Large Language Models. Annual Conference of the North American Chapter of the Association for Computational Linguistics. https://arxiv.org/abs/2311.10112
    18. Fathallah, N., Bhole, M., & Staab, S. (2024). Empowering the Deaf and Hard of Hearing Community: Improving Video Captions with Large Language Models. In In Proceedings of the 11th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion.
    19. Fathallah, N., Das, A., De Giorgis, G., Poltronieri, A., Haase, P., & Kovriguina, L. (2024). NeOn-GPT: A Large Language Model-Powered Pipeline for Ontology Learning. Special Track on Large Language Models for Knowledge Engineering, Extended Semantic Web Conference, 2024. (ESWC 2024). https://doi.org/10.5281/ZENODO.11221930
    20. Fathallah, N., Staab, S., & Algergawy, A. (2024). LLMs4Life: Large language models for ontology learning in life sciences. In In Proceedings of the ELMKE Workshop on Evaluation of Language Models in Knowledge Engineering co-located with EKAW-24 (24th International Conference on Knowledge Engineering and Knowledge Management).
    21. Hagnberger, J., Kalimuthu, M., Musekamp, D., & Niepert, M. (2024). Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent Parametric Partial Differential Equations. In Proceedings of the 41st International Conference on Machine Learning (ICML 2024). https://arxiv.org/abs/2406.03919
    22. Hedeshy, R., Menges, R., & Staab, S. (2024). Raw audio samples of the CNVVE dataset. DaRUS. https://doi.org/10.18419/DARUS-3897
    23. Hedeshy, R., Menges, R., & Staab, S. (2024). CNVVE Dataset clean audio samples. DaRUS. https://doi.org/10.18419/DARUS-3898
    24. Jalali Farahani, F., Hanke, S., Dima, C., Heiberger, R. H., & Staab, S. (2024). Who is targeted? Detecting social group mentions in online political discussions. Companion Publication of the 16th ACM Web Science Conference, 24–25. https://doi.org/10.1145/3630744.3658412
    25. Nguyen, D. M. H., Le, A. T., Nguyen, T. Q., Diep, N. T., Nguyen, T., Duong-Tran, D., Peters, J., Shen, L., Niepert, M., & Sonntag, D. (2024). Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model. Proceedings of Machine Learning Research. https://arxiv.org/abs/2407.04489
    26. Nguyen, D. M. H., Lukashina, N., Nguyen, T., Le, A. T., Nguyen, T., Ho, N., Peters, J., Sonntag, D., Zaverkin, V., & Niepert, M. (2024). Structure-Aware E(3)-Invariant Molecular Conformer Aggregation Networks. In Proceedings of the 41st International Conference on Machine Learning (ICML 2024). https://arxiv.org/abs/2402.01975
    27. Pan, J., Nayyeri, M., Li, Y., & Staab, S. (2024). HGE: Embedding Temporal Knowledge Graphs in a Product Space of Heterogeneous Geometric Subspaces. Thirty-Eighth Conference on Artificial Intelligence, AAAI, 2024, Vancouver, Canada, February 22 – February 25, 2024,.
    28. Pan, X., Hernández, D., Seifer, P., Lämmel, R., & Staab, S. (2024). eSPARQL: Representing and Reconciling Agnostic and Atheistic Beliefs in RDF-star Knowledge Graphs. https://arxiv.org/abs/2407.21483
    29. Peng, K., Yin, C., Zheng, J., Liu, R., Schneider, D., Zhang, J., Yang, K., Sarfraz, M. S., Stiefelhagen, R., & Roitberg, A. (2024). Navigating Open Set Scenarios for Skeleton-based Action Recognition. The 38th Annual AAAI Conference on Artificial Intelligence. https://arxiv.org/abs/2312.06330
    30. Potyka, N., Zhu, Y., He, Y., Kharlamov, E., & Staab, S. (2024). Robust Knowledge Extraction from Large Language Models using Social Choice Theory. In Proceedings of the 23rd International Conference on Autonomous Agents and Multi-Agent Systems. https://arxiv.org/abs/2312.14877
    31. Schwindt, S., Meisinger, L., Negreiros, B., Schneider, T., & Nowak, W. (2024). Transfer learning achieves high recall for object classification in fluvial environments with limited data. Geomorphology, 455, 109185. https://doi.org/10.1016/j.geomorph.2024.109185
    32. Seifer, P., Hernández, D., Lämmel, R., & Staab, S. (2024). Code for From Shapes to Shapes. https://doi.org/10.18419/darus-3977
    33. Serra, G., & Niepert, M. (2024). L2XGNN: Learning to Explain Graph Neural Networks. Machine Learning Journal. https://arxiv.org/abs/2209.14402
    34. Tan, Y., Lv, H., Zhou, Z., Guo, W., Xiong, B., Liu, W., Chen, C., Wang, S., & Yang, C. (2024). Logical Relation Modeling and Mining in Hyperbolic Space for Recommendation. The 40th IEEE International Conference on Data Engineering. http://www.cs.emory.edu/~jyang71/files/logirec.pdf
    35. Xiong, B., Nayyeri, M., Cochez, M., & Staab, S. (2024). Code for Hyperbolic Embedding Inference for Structured Multi-Label Prediction. DaRUS. https://doi.org/10.18419/DARUS-3988
    36. Xiong, B., Nayyeri, M., Luo, L., Wang, Z., Pan, S., & Staab, S. (2024). NestE: Modeling Nested Relational Structures for Knowledge Graph Reasoning. The 38th Annual AAAI Conference on Artificial Intelligence. https://arxiv.org/abs/2312.09219
    37. Xiong, B., Nayyeri, M., Luo, L., Wang, Z., Pan, S., & Staab, S. (2024). Replication Data for NestE: Modeling Nested Relational Structures for Knowledge Graph Reasoning (AAAI’24). DaRUS. https://doi.org/10.18419/DARUS-3978
    38. Xiong, B., Nayyeri, M., Pan, S., & Staab, S. (2024). Code for Shrinking Embeddings for Hyper-relational Knowledge Graphs. DaRUS. https://doi.org/10.18419/DARUS-3979
    39. Xiong, B., Potyka, N., Tran, T.-K., Nayyeri, M., & Staab, S. (2024). Code for Faithful Embeddings for EL++ Knowledge Bases. DaRUS. https://doi.org/10.18419/DARUS-3989
    40. Xiong, B., Zhu, S., Nayyeri, M., Xu, C., Pan, S., & Staab, S. (2024). Code for Ultrahyperbolic Knowledge Graph Embeddings. DaRUS. https://doi.org/10.18419/DARUS-4342
    41. Zaverkin, V., Holzmüller, D., Christiansen, H., Errica, F., Alesiani, F., Takamoto, M., Niepert, M., & Kästner, J. (2024). Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials. Npj Comput. Mater., 10(1), Article 1. https://doi.org/10.1038/s41524-024-01254-1
    42. Zhu, Y., Potyka, N., Nayyeri, M., Xiong, B., He, Y., Kharlamov, E., & Staab, S. (2024). Predictive Multiplicity of Knowledge Graph Embeddings in Link Prediction. Proceeding of the 2024 Conference on Empirical Methods in Natural Language Processing. https://arxiv.org/pdf/2408.08226
  2. 2023

    1. Baier, A., Aspandi, D., & Staab, S. (2023, August). ReLiNet: Stable and Explainable Multistep Prediction with Recurrent Linear Parameter Varying Networks. Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23. https://opencms.uni-stuttgart.de/permalink/7e4a70e2-10ca-11ee-ba91-000e0c3db68b.pdf
    2. Hedeshy, R., Menges, R., & Staab, S. (2023). CNVVE: Dataset and Benchmark for Classifying Non-verbal Voice Expressions. Proc. INTERSPEECH 2023, 1553–1557. https://doi.org/10.21437/Interspeech.2023-201
    3. Liu, A., Niepert, M., & den Broeck, G. V. (2023, May). Image Inpainting via Tractable Steering of Diffusion Models. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7--11, 2024, Austria. https://doi.org/10.48550/arXiv.2401.03349
    4. Baier, A., Aspandi, D., & Staab, S. (2023). Supplements for “ReLiNet: Stable and Explainable Multistep Prediction with Recurrent Linear Parameter Varying Networks”". DaRUS. https://doi.org/10.18419/DARUS-3457
    5. Baier, A., & Frank, D. (2023). deepsysid: System Identification Toolkit for Multistep Prediction using Deep Learning. DaRUS. https://doi.org/10.18419/DARUS-3455
    6. Elshani, D., Hernandez, D., Lombardi, A., Siriwardena, L., Schwinn, T., Fisher, A., Staab, S., Menges, A., & Wortmann, T. (2023). Building Information Validation and Reasoning Using Semantic Web Technologies. In M. Turrin, C. Andriotis, & A. Rafiee (Eds.), Computer-Aided Architectural Design. INTERCONNECTIONS: Co-computing Beyond Boundaries (pp. 470--484). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-37189-9_31
    7. Elshani, D., Lombardi, A., Hernández, D., Staab, S., Fisher, A., & Wortmann, T. (2023). BHoM to bhOWL converter. DaRUS. https://doi.org/10.18419/darus-3364
    8. Galárraga, L., Hernández, D., Katim, A., & Hose, K. (2023). Visualizing How-Provenance Explanations for SPARQL Queries. In Y. Ding, J. Tang, J. F. Sequeda, L. Aroyo, C. Castillo, & G.-J. Houben (Eds.), Companion Proceedings of the ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May 2023 (pp. 212–216). ACM. https://doi.org/10.1145/3543873.3587350
    9. Gregucci, C. (2023). Query Answering over the Polymorphic Web of Data. In C. Pesquita, H. Skaf-Molli, V. Efthymiou, S. Kirrane, A. Ngonga, D. Collarana, R. Cerqueira, M. Alam, C. Trojahn, & S. Hertling (Eds.), The Semantic Web: ESWC 2023 Satellite Events - Hersonissos, Crete, Greece, May 28 - June 1, 2023, Proceedings (Vol. 13998, pp. 255--265). Springer. https://doi.org/10.1007/978-3-031-43458-7_44
    10. Gregucci, C., Nayyeri, M., Hernández, D., & Staab, S. (2023). Link Prediction with Attention Applied on Multiple Knowledge Graph Embedding Models. In Y. Ding, J. Tang, J. F. Sequeda, L. Aroyo, C. Castillo, & G.-J. Houben (Eds.), Proceedings of the ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May 2023 (pp. 2600–2610). ACM. https://doi.org/10.1145/3543507.3583358
    11. He, Y., Nayyeri, M., Xiong, B., Zhu, Y., Kharlamov, E., & Staab, S. (2023). Can Pattern Learning Enhance Complex Logical Query Answering? CEUR Workshop Proceedings. https://hozo.jp/ISWC2023_PD-Industry-proc/ISWC2023_paper_463.pdf
    12. Hosseini, A. S., & Staab, S. (2023). Emotional Framing in the Spreading of False and True Claims. Proceedings of the 15th ACM Web Science Conference 2023, 96--106.
    13. Lu, J., Shen, J., Xiong, B., Ma, W., Staab, S., & Yang, C. (2023). HiPrompt: Few-Shot Biomedical Knowledge Fusion via Hierarchy-Oriented Prompting. The 46th International ACM SIGIR Conference on Research and Development in Information Retrieval 2023. https://arxiv.org/abs/2304.05973
    14. Minh Ho Nguyen, D., Ngoc Pham, T., Tuong Diep, N., Phan, N., Pham, Q., Tong, V., T. Nguyen, B., Hoang Le, N., Ho, N., Xie, P., Sonntag, D., & Niepert, M. (2023). On the Out of Distribution Robustness of Foundation Models in Medical Image Segmentation. Advances in Neural Information Processing Systems (NeurIPS), Workshop on Robustness of Zero/Few-Shot Learning in Foundation Models. https://arxiv.org/pdf/2311.11096.pdf
    15. Minh Ho Nguyen, D., Nguyen, H., N. T. Mai, T., Tri, C., T. Nguyen, B., Ho, N., Swoboda, P., Albarqouni, S., Xie, P., & Sonntag, D. (2023). Joint Self-Supervised Image-Volume Representation Learning with Intra-Inter Contrastive Clustering. Proceedings of the AAAI Conference on Artificial Intelligence. https://ojs.aaai.org/index.php/AAAI/article/view/26687
    16. Minh Ho Nguyen, D., Nguyen, H., T Diep, N., N Pham, T., Cao, T., T Nguyen, B., Swoboda, P., Ho, N., Albarqouni, S., Xie, P., Sonntag, D., & Niepert, M. (2023). LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical Imaging via Second-order Graph Matching. Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS 2023). https://proceedings.neurips.cc/paper_files/paper/2023/file/58cc11cda2a2679e8af5c6317aed0af8-Paper-Conference.pdf
    17. Mjalled, A., Torres, E., & Mönnigmann, M. (2023). Reduced-order modeling framework using two-level neural networks. PAMM, n/a(n/a), Article n/a. https://doi.org/10.1002/pamm.202300061
    18. Monninger, T., Schmidt, J., Rupprecht, J., Raba, D., Jordan, J., Frank, D., Staab, S., & Dietmayer, K. (2023). SCENE: Reasoning about Traffic Scenes using Heterogeneous Graph Neural Networks. IEEE Robotics and Automation Letters, 1–8. https://doi.org/10.1109/LRA.2023.3234771
    19. Monninger, T., Weber, A., & Staab, S. (2023). Semantic Map Learning of Traffic Light to Lane Assignment based on                  Motion Data. 25th IEEE International Conference on Intelligent Transportation                  Systems, ITSC 2022, Macau, China, October 8-12, 2022, 1583--1590. https://doi.org/10.1109/ITSC57777.2023.10422549
    20. Morales-Alvarez, W., Certad, N., Roitberg, A., Stiefelhagen, R., & Olaverri-Monreal, C. (2023). On Transferability of Driver Observation Models from Simulated to Real Environments in Autonomous Cars. 2023 IEEE International Conference on Intelligent Transportation Systems (ITSC).
    21. Nayyeri, M., Wang, Z., Akter, Mst. M., Alam, M. M., Rony, M. R. A. H., Lehmann, J., & Staab, S. (2023). Integrating Knowledge Graph Embeddings and Pre-trained Language Models in Hypercomplex Spaces. In The Semantic Web – ISWC 2023. https://doi.org/10.1007/978-3-031-47240-4_21
    22. Potyka, N., Zhu, Y., He, Y., Kharlamov, E., & Staab, S. (2023). Robust Knowledge Extraction from Large Language Models using Social Choice Theory.
    23. Qian, C., Manolache, A., Ahmed, K., Zeng, Z., den Broeck, G. V., Niepert, M., & Morris, C. (2023). Probabilistic Task-Adaptive Graph Rewiring. ICML 2023 Workshop on Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators. https://openreview.net/forum?id=YsHKrMPHE1
    24. Schmidt, J., Jordan, J., Gritschneder, F., Monninger, T., & Dietmayer, K. (2023). Exploring Navigation Maps for Learning-Based Motion Prediction. IEEE International Conference on Robotics and Automation, ICRA                  2023, London, UK, May 29 - June 2, 2023, 3539--3545. https://doi.org/10.1109/ICRA48891.2023.10160989
    25. Schmidt, J., Monninger, T., Jordan, J., & Dietmayer, K. (2023). LMR: Lane Distance-Based Metric for Trajectory Prediction. IEEE Intelligent Vehicles Symposium, IV 2023, Anchorage, AK, USA,                  June 4-7, 2023, 1--6. https://doi.org/10.1109/IV55152.2023.10186555
    26. Schneider, T., Totounferoush, A., Nowak, W., & Staab, S. (2023). Probabilistic Regular Tree Priors for Scientific Symbolic Reasoning. https://arxiv.org/pdf/2306.08506.pdf
    27. Tanama, C., Peng, K., Marinov, Z., Stiefelhagen, R., & Roitberg, A. (2023). Quantized Distillation: Optimizing Driver Activity Recognition Models for Resource-Constrained Environments. 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
    28. Wang, Y., Dima, C., & Staab, S. (2023). WikiMed-DE: Constructing a Silver-Standard Dataset for German Biomedical Entity Linking using Wikipedia and Wikidata. The 4th Wikidata Workshop @ ISWC 2023. https://openreview.net/forum?id=5dQ7YDSYya
    29. Xiong, B., Nayyeri, M., Pan, S., & Staab, S. (2023). Shrinking Embeddings for Hyper-Relational Knowledge Graphs. The 61st Annual Meeting of the Association for Computational Linguistics. https://arxiv.org/abs/2306.02199
    30. Zhu, Y., Potyka, N., Xiong, B., Tran, T.-K., Nayyeri, M., Staab, S., & Kharlamov, E. (2023). Towards Statistical Reasoning with Ontology Embeddings. https://hozo.jp/ISWC2023_PD-Industry-proc/ISWC2023_paper_442.pdf
    31. Zhu, Y., Tnani, M.-A., Jahnz, T., & Diepold, K. (2023). Active Transfer Prototypical Network: An Efficient Labeling Algorithm for Time-Series Data. Procedia Computer Science, 217, 1427–1436.
  3. 2022

    1. Brad, F., Manolache, A., Burceanu, E., Barbalau, A., Ionescu, R. T., & Popescu, M. (2022). Rethinking the Authorship Verification Experimental Setups. Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, 5634--5643. https://doi.org/10.18653/v1/2022.emnlp-main.380
    2. Elshani, D., Lombardi, A., Fisher, A., Staab, S., Hernández, D., & Wortmann, T. (2022, September). Inferential Reasoning in Co-Design Using Semantic Web Standards alongside BHoM. Proceedings of 33. Forum Bauinformatik.
    3. Xiong, B., Zhu, S., Nayyeri, M., Xu, C., Pan, S., Zhou, C., & Staab, S. (2022, August). Ultrahyperbolic Knowledge Graph Embeddings. 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD-22. https://doi.org/10.1145/3534678.3539333
    4. Elshani, D., Lombardi, A., Fisher, A., Staab, S., Hernández, D., & Wortmann, T. (2022, May). Knowledge Graphs for Multidisciplinary Co-Design: Introducing RDF to BHoM. In Proceedings of LDAC2022 - 10th Linked Data in Architecture and Construction Workshop. LDAC2022 - 10th Linked Data in Architecture and Construction Workshop, Hersonissos, Greece.
    5. Elshani, D., Wortmann, T., & Staab, S. (2022, May). Towards Better Co-Design with Disciplinary Ontologies: Review and Evaluation of Data Interoperability in the AEC Industry. In Proceedings of LDAC2022 - 10th Linked Data in Architecture and Construction Workshop. LDAC2022 - 10th Linked Data in Architecture and Construction Workshop, Hersonissos, Greece.
    6. Shoukry, N., Abd El Ghany, M. A., & Salem, M. A.-M. (2022). Multi-Modal Long-Term Person Re-Identification Using Physical Soft Bio-Metrics and Body Figure. Applied Sciences, 12(6), Article 6. https://doi.org/10.3390/app12062835
    7. Alayary, Y., Shoukry, N., Ghany, M. A. A. E., & Salem, M. A.-M. (2022). Face Masked and Unmasked Humans Detection and Tracking in Video Surveillance. 4th Novel Intelligent and Leading Emerging Sciences Conference, NILES                  2022, Giza, Egypt, October 22-24, 2022, 211--215. https://doi.org/10.1109/NILES56402.2022.9942375
    8. Baier, A., & Staab, S. (2022). A Simulated 4-DOF Ship Motion Dataset for System Identification under Environmental Disturbances. https://doi.org/10.18419/darus-2905
    9. Dragoi, M., Burceanu, E., Haller, E., Manolache, A., & Brad, F. (2022). AnoShift: A Distribution Shift Benchmark for Unsupervised Anomaly Detection. Thirty-Sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track. https://openreview.net/forum?id=rbrouCKPiej
    10. Frank, D., Latif, D. A., Muehlebach, M., Unger, B., & Staab, S. (2022). Robust Recurrent Neural Network to Identify Ship Motion in Open Water with Performance Guarantees - Technical Report. https://doi.org/10.48550/arXiv.2212.05781
    11. Iurshina, A., Pan, J., Boutalbi, R., & Staab, S. (2022). NILK : Entity Linking Dataset Targeting NIL-Linking Cases. In M. Al Hasan & L. Xiong (Eds.), CIKM ’22 : Proceedings of the 31st ACM International Conference on Information & Knowledge Management (pp. 4069–4073). Association for Computing Machinery. https://doi.org/10.1145/3511808.3557659
    12. Liuzniak, A. (2022). How users attend to online comments: an eye-tracking approach [Master’s Thesis]. https://doi.org/10.18419/OPUS-11979
    13. Manolache, A., Brad, F., Barbalau, A., Ionescu, R. T., & Popescu, M. (2022). VeriDark: A Large-Scale Benchmark for Authorship Verification on the Dark Web. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), Advances in Neural Information Processing Systems (Vol. 35, pp. 15574--15588). Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2022/file/64008fa30cba9b4d1ab1bd3bd3d57d61-Paper-Datasets_and_Benchmarks.pdf
    14. Potyka, N., Bazo, M., Spieler, J., & Staab, S. (2022). Learning Gradual Argumentation Frameworks using Meta-heuristics. In I. Kuhlmann, J. Mumford, & S. Sarkadi (Eds.), Proceedings of the 1st Workshop on Argumentation & Machine Learning co-located with 9th International Conference on Computational Models of Argument (COMMA 2022), Cardiff, Wales, September 13th, 2022 (Vol. 3208, pp. 96–108). CEUR-WS.org. https://ceur-ws.org/Vol-3208/paper7.pdf
    15. Schneider, T., Qiu, C., Kloft, M., Aspandi-Latif, D., Staab, S., Mandt, S., & Rudolph, M. (2022). Detecting Anomalies within Time Series using Local Neural Transformations. ArXiv Preprint. https://arxiv.org/abs/2202.03944
    16. Sengupta, K., N., F., & Staab, S. (2022). Accessibility of Online Educational Platforms. MPDAS Workshop (Multidisciplinary Perspectives on Designing Accessible Systems for Users with Multiple Impairments: Grand Challenges and Opportunities for Future Research Workshop, The 24th International ACM SIGACCESS Conference on Computers and Accessibility), 23. October 2022.
    17. Xiong, B., Cochez, M., Nayyeri, M., & Staab, S. (2022). Hyperbolic Embedding Inference for Structured Multi-Label Prediction. Advances in Neural Information Processing Systems 2022. https://openreview.net/forum?id=XFnDhcEH9FF
    18. Xiong, B., Potyka, N., Tran, T.-K., Nayyeri, M., & Staab, S. (2022). Faithful Embedding for EL++ Knowledge Bases. Proceedings of the 21st International Semantic Web Conference (ISWC 2022), 1–16. https://arxiv.org/abs/2201.09919
    19. Xiong, B., Zhu, S., Potyka, N., Pan, S., Zhou, C., & Staab, S. (2022). Pseudo-Riemannian Graph Convolutional Networks. Advances in Neural Information Processing Systems. https://arxiv.org/abs/2106.03134
  4. 2021

    1. Fathallah, N., Ehab, F., & Salem, M. A.-M. (2021). An Improved Deep Learning Model for Early Fire and Smoke Detection on Edge Vision Unit. 2021 Tenth International Conference on Intelligent Computing and Information Systems (ICICIS), 66–73. https://doi.org/10.1109/ICICIS52592.2021.9694193
    2. Gamal, A., Shoukry, N., & Salem, M. A.-M. (2021). Long-Term Person Re-identification Model with a Strong Feature Extractor. 2021 Tenth International Conference on Intelligent Computing and Information Systems (ICICIS), 74–79. https://doi.org/10.1109/ICICIS52592.2021.9694212
    3. Hernández, D., Galárraga, L., & Hose, K. (2021). Computing how-provenance for SPARQL queries via query rewriting (No. 13). 14(13), Article 13. https://doi.org/10.14778/3484224.3484235
    4. Manolache, A., Brad, F., & Burceanu, E. (2021). DATE: Detecting Anomalies in Text via Self-Supervision of Transformers. Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 267--277. https://doi.org/10.18653/v1/2021.naacl-main.25
    5. Baier, A., Boukhers, Z., & Staab, S. (2021). Hybrid Physics and Deep Learning Model for Interpretable Vehicle State Prediction. http://arxiv.org/abs/2103.06727
    6. Bazo, M. W. (2021). Learning quantitative argumentation frameworks using sparse neural networks and swarm intelligence algorithms. Department of Analytical Computing. https://doi.org/10.18419/OPUS-11903
    7. Bolz, S. (2021). Multistep prediction of vehicle states using transformers. https://doi.org/10.18419/OPUS-11901
    8. Evci, H. (2021). Extracting and segmenting high-variance references from PDF documents with BERT. https://doi.org/10.18419/OPUS-11940
    9. Holeczek, C. (2021). Entwicklung eines neuronalen Netzwerks zur Optimierung der Datenübertragungsqualität von Kleinsatellitenplattformen [Master’s Thesis]. https://doi.org/10.18419/OPUS-11904
    10. Lauer, M. (2021). Gaze and voice driven hands free gaming. Department of Analytical Computing. https://doi.org/10.18419/OPUS-11902
    11. Lukas Schmelzeisen, Corina Dima, S. S. (2021). Wikidated 1.0: An Evolving Knowledge Graph Dataset of Wikidata’s Revision                History. Wikidata Workshop @ ISWC 2021, 2982.
    12. Miolane, N., Caorsi, M., Lupo, U., Guerard, M., Guigui, N., Mathe, J., Cabanes, Y., Reise, W., Davies, T., Leitão, A., Mohapatra, S., Utpala, S., Shailja, S., Corso, G., Liu, G., Iuricich, F., Manolache, A., Nistor, M., Bejan, M., … Long, Y. (2021). ICLR 2021 Challenge for Computational Geometry & Topology: Design and Results.
    13. Potyka, N. (2021). Interpreting Neural Networks as Quantitative Argumentation Frameworks. Proceedings of the AAAI Conference on Artificial Intelligence, 35, 7, Article 35, 7. https://ojs.aaai.org/index.php/AAAI/article/view/16801
    14. Potyka, N. (2021). Generalizing Complete Semantics to Bipolar Argumentation Frameworks. In J. Vejnarová & N. Wilson (Eds.), Symbolic and Quantitative Approaches to Reasoning with Uncertainty : 16th European Conference, ECSQARU 2021 Prague, Czech Republic, September 21-24, 2021, Proceedings (No. 12897; Issue 12897, pp. 130–143). Springer. https://doi.org/10.1007/978-3-030-86772-0_10
    15. Schmelzeisen, L., Dima, C., & Staab, S. (2021). Wikidated 1.0: An Evolving Knowledge Graph Dataset of Wikidata’s Revision                History. Wikidata Workshop @ ISWC 2021, 2982.
    16. Yuan, Y., Pan, J., Jia, X., Liu, L., & Peng, M. (2021). DCEN: A Decoupled Context Enhanced Network For Few-shot Slot Tagging. 2021 International Joint Conference on Neural Networks (IJCNN), 1–7. https://doi.org/10.1109/IJCNN52387.2021.9533361
  5. 2020

    1. Kyza, E. A., Varda, C., Panos, D., Karageorgiou, M., Komendantova-Amann, N., Coppolino Perfumi, S., Shah, S. I. H., & Hosseini, A. S. (2020). Combating misinformation online: re-imagining social media for policy-making. Internet Policy Review. https://www.econstor.eu/handle/10419/225651
    2. Potyka, N. (2020). Abstract Argumentation with Markov Networks. European Conference on Artificial Intelligence (ECAI), 865–872. https://www.researchgate.net/publication/338886145_Abstract_Argumentation_with_Markov_Networks
    3. Potyka, N. (2020). Bipolar Abstract Argumentation with Dual Attacks and Supports. In D. Calvanese, E. Erdem, & M. Thielscher (Eds.), Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (pp. 677–686). IJCAI Organization. https://doi.org/10.24963/kr.2020/69
    4. Shoukry, N., Elkilany, O., Thiam, P., Kessler, V., & Schwenker, F. (2020). Subject-independent Pain Recognition using Physiological Signals and Para-linguistic Vocalizations. Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods, 142–150. https://doi.org/10.5220/0008912201420150
    5. Wong, E., Schneider, T., Schmitt, J., Schmidt, F. R., & Kolter, J. Z. (2020). Neural Network Virtual Sensors for Fuel Injection Quantities with Provable Performance Specifications. 2020 IEEE Intelligent Vehicles Symposium (IV), 1753–1758. https://doi.org/10.1109/IV47402.2020.9304765
  6. 2019

    1. Dima, C., de Kok, D., Witte, N., & Hinrichs, E. (2019). No Word is an Island---A Transformation Weighting Model for Semantic Composition. Transactions of the Association for Computational Linguistics, 7, 437--451. https://doi.org/10.1162/tacl_a_00275
    2. Dima, G.-C. (2019). Composition Models for the Representation and Semantic Interpretation of Nominal Compounds [Universität Tübingen]. https://doi.org/10.15496/PUBLIKATION-28485
  7. 2018

    1. Frank, D., Zelazo, D., & Allgöwer, F. (2018). Bearing-Only Formation Control with Limited Visual Sensing: Two Agent Case. IFAC-PapersOnLine, 51(23), Article 23. https://doi.org/10.1016/j.ifacol.2018.12.006
    2. Hernández, D., Gutierrez, C., & Angles, R. (2018). The problem of correlation and substitution in SPARQL-Extended Version. In arXiv (ArXiv). https://doi.org/10.48550/arXiv.1801.04387
    3. Hernández, D., Gutiérrez, C., & Hogan, A. (2018). Certain Answers for SPARQL with Blank Nodes. In D. Vrandecic, K. Bontcheva, M. C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L.-A. Kaffee, & E. Simperl (Eds.), The Semantic Web - ISWC 2018 - 17th International Semantic Web Conference, Monterey, CA, USA, October 8-12, 2018, Proceedings, Part I (Vol. 11136, pp. 337--353). Springer. https://doi.org/10.1007/978-3-030-00671-6_20
  8. 2017

    1. de Kok, D., Ma, J., Dima, C., & Hinrichs, E. (2017). PP Attachment: Where do We Stand? In M. Lapata, P. Blunsom, & A. Koller (Eds.), Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers (pp. 311--317). Association for Computational Linguistics. https://aclanthology.org/E17-2050
    2. de Kok, D., Dima, C., Ma, J., & Hinrichs, E. W. (2017). Extracting a PP Attachment Data Set from a German Dependency Treebank                  Using Topological Fields. In M. Dickinson, J. Hajic, S. Kübler, & A. Przepiórkowski (Eds.), Proceedings of the 15th International Workshop on Treebanks and Linguistic                  Theories (TLT15), Bloomington, IN, USA, January 20-21, 2017 (Vol. 1779, pp. 89--98). CEUR-WS.org. https://ceur-ws.org/Vol-1779/07dekok.pdf
    3. de Kok, D., Fischer, P., Dima, C., & Hinrichs, E. (2017). Distributional regularities of verbs and verbal adjectives: Treebank evidence and broader implications. In J. Hajic (Ed.), Proceedings of the 16th International Workshop on Treebanks and Linguistic Theories (pp. 1--9). https://aclanthology.org/W17-7603
    4. Hernández, D., & Gutiérrez, C. (2017). Semantics for Querying Paths in Graph Databases: No-repeated-node or No-repeated-edge? In J. L. Reutter & D. Srivastava (Eds.), Proceedings of the 11th Alberto Mendelzon International Workshop on Foundations of Data Management and the Web, Montevideo, Uruguay, June 7-9, 2017. (Vol. 1912). CEUR-WS.org. http://ceur-ws.org/Vol-1912/paper13.pdf
  9. 2016

    1. Dima, C. (2016). On the Compositionality and Semantic Interpretation of English Noun Compounds. In P. Blunsom, K. Cho, S. Cohen, E. Grefenstette, K. M. Hermann, L. Rimell, J. Weston, & S. W. Yih (Eds.), Proceedings of the 1st Workshop on Representation Learning for NLP (pp. 27--39). Association for Computational Linguistics. https://doi.org/10.18653/v1/W16-1604
    2. Gutiérrez, C., Hernández, D., Hogan, A., & Polleres, A. (2016). Certain Answers for SPARQL? In R. Pichler & A. S. da Silva (Eds.), Proceedings of the 10th Alberto Mendelzon International Workshop on Foundations of Data Management, Panama City, Panama, May 8-10, 2016. (Vol. 1644). CEUR-WS.org. http://ceur-ws.org/Vol-1644/paper13.pdf
    3. Hernández, D., Hogan, A., Riveros, C., Rojas, C., & Zerega, E. (2016). Querying Wikidata: Comparing SPARQL, Relational and Graph Databases. In P. T. Groth, E. Simperl, A. J. G. Gray, M. Sabou, M. Krötzsch, F. Lécué, F. Flöck, & Y. Gil (Eds.), The Semantic Web - ISWC 2016 - 15th International Semantic Web Conference, Kobe, Japan, October 17-21, 2016, Proceedings, Part II (Vol. 9982, pp. 88--103). https://doi.org/10.1007/978-3-319-46547-0_10
    4. Niepert, M., Ahmed, M., & Kutzkov, K. (2016). Learning Convolutional Neural Networks for Graphs. In M.-F. Balcan & K. Q. Weinberger (Eds.), Proceedings of the 33nd International Conference on Machine Learning,                  ICML 2016, New York City, NY, USA, June 19-24, 2016 (Vol. 48, pp. 2014--2023). JMLR.org. http://proceedings.mlr.press/v48/niepert16.html
  10. 2015

    1. Dima, C. (2015). Reverse-engineering Language: A Study on the Semantic Compositionality of German Compounds. In L. Màrquez, C. Callison-Burch, & J. Su (Eds.), Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 1637--1642). Association for Computational Linguistics. https://doi.org/10.18653/v1/D15-1188
    2. Sorokin, D., Dima, C., & Hinrichs, E. (2015). Classifying Semantic Relations in German Nominal Compounds using a Hybrid Annotation Scheme. Journal of Cognitive Science, 16(3), Article 3.
    3. Dima, C., & Hinrichs, E. (2015). Automatic Noun Compound Interpretation using Deep Neural Networks and Word Embeddings. In M. Purver, M. Sadrzadeh, & M. Stone (Eds.), Proceedings of the 11th International Conference on Computational Semantics (pp. 173--183). Association for Computational Linguistics. https://aclanthology.org/W15-0122
    4. Hernández, D., & Gutiérrez, C. (2015). Disentangling the Notion of Dataset in SPARQL. In A. Cali & M.-E. Vidal (Eds.), Proceedings of the 9th Alberto Mendelzon International Workshop on Foundations of Data Management, Lima, Peru, May 6 - 8, 2015. (Vol. 1378). CEUR-WS.org. http://ceur-ws.org/Vol-1378/AMW_2015_paper_41.pdf
    5. Hernández, D., Hogan, A., & Krötzsch, M. (2015). Reifying RDF: What Works Well With Wikidata? In T. Liebig & A. Fokoue (Eds.), Proceedings of the 11th International Workshop on Scalable Semantic Web Knowledge Base Systems co-located with 14th International Semantic Web Conference (ISWC 2015), Bethlehem, PA, USA, October 11, 2015. (Vol. 1457, pp. 32–47). CEUR-WS.org. http://ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf
  11. 2014

    1. Dima, C., Henrich, V., Hinrichs, E., & Hoppermann, C. (2014). How to Tell a Schneemann from a Milchmann: An Annotation Scheme for Compound-Internal Relations. In N. Calzolari, K. Choukri, T. Declerck, H. Loftsson, B. Maegaard, J. Mariani, A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14) (pp. 1194--1201). European Language Resources Association (ELRA). http://www.lrec-conf.org/proceedings/lrec2014/pdf/329_Paper.pdf
    2. Dima, C. (2014). Answering Natural Language Questions with Intui3. In L. Cappellato, N. Ferro, M. Halvey, & W. Kraaij (Eds.), Working Notes for CLEF 2014 Conference, Sheffield, UK, September                  15-18, 2014 (Vol. 1180, pp. 1201--1211). CEUR-WS.org. https://ceur-ws.org/Vol-1180/CLEF2014wn-QA-Dima2014.pdf
  12. 2013

    1. Dima, C. (2013). Intui2: A Prototype System for Question Answering over Linked Data. In P. Forner, R. Navigli, D. Tufis, & N. Ferro (Eds.), Working Notes for CLEF 2013 Conference , Valencia, Spain, September                  23-26, 2013 (Vol. 1179). CEUR-WS.org. https://ceur-ws.org/Vol-1179/CLEF2013wn-QALD3-Dima2013.pdf
  13. 2012

    1. Culy, C., Dima, C., & Dima, E. (2012). Through the Looking Glass: Two Approaches to Visualizing Linguistic Syntax Trees. 2012 16th International Conference on Information Visualisation, 214–219. https://doi.org/10.1109/IV.2012.44
  14. 2011

    1. Dima, C., & Hinrichs, E. (2011). A Semi-Automatic, Iterative Method for Creating a Domain-Specific Treebank. In R. Mitkov & G. Angelova (Eds.), Proceedings of the International Conference Recent Advances in Natural Language Processing 2011 (pp. 413--419). Association for Computational Linguistics. https://aclanthology.org/R11-1057
  15. 2009

    1. Cristea, D., Dima, E., & Dima, C. (2009). Why Would a Robot Make Use of Pronouns? An Evolutionary Investigation of the Emergence of Pronominal Anaphora. In S. Lalitha Devi, A. Branco, & R. Mitkov (Eds.), Anaphora Processing and Applications (pp. 1--14). Springer Berlin Heidelberg.

Head of Department

Research Group Leader

To the top of the page