Pan, X., Hernández, D., Seifer, P., Lämmel, R., & Staab, S. (2024). eSPARQL: Representing and Reconciling Agnostic and Atheistic Beliefs in RDF-star Knowledge Graphs. In G. Demartini, K. Hose, M. Acosta, M. Palmonari, G. Cheng, H. Skaf-Molli, N. Ferranti, D. Hernández, & A. Hogan (eds.),
The Semantic Web - ISWC 2024 - 23rd International Semantic Web Conference, Baltimore, MD, USA, November 11-15, 2024, Proceedings, Part II (Vol. 15232, pp. 155–172). Springer.
https://doi.org/10.1007/978-3-031-77850-6_9
BibTeX
He, Y., Hernandez, D., Nayyeri, M., Xiong, B., Zhu, Y., Kharlamov, E., & Staab, S. (2024). Generating SROI⁻ Ontologies via Knowledge Graph Query Embedding Learning. In U. Endriss, F. S. Melo, K. Bach, A. J. Bugarín Diz, J. M. Alonso-Moral, S. Barro, & F. Heintz (eds.),
ECAI 2024 - 27th European Conference on Artificial Intelligence, 19-24 October 2024, Santiago de Compostela, Spain - Including 13th Conference on Prestigious Applications of Intelligent Systems (PAIS 2024) (Vol. 392, pp. 4279–4286). IOS Press.
https://doi.org/10.3233/FAIA241002
BibTeX
Navigli, R., Lo Pinto, M., Silvestri, P., Rotondi, D., Ciciliano, S., & Scirè, A. (2024). NounAtlas: Filling the Gap in Nominal Semantic Role Labeling. In L.-W. Ku, A. Martins, & V. Srikumar (Eds.),
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 16245–16258). Association for Computational Linguistics.
https://aclanthology.org/2024.acl-long.857
BibTeX
Seifer, P., Hernández, D., Lämmel, R., & Staab, S. (2024). Inferring SHACL Constraints for Results of Composable Graph Queries (Extended Abstract). In L. Giordano, J. C. Jung, & A. Ozaki (Eds.),
Proceedings of the 37th International Workshop on Description Logics (DL 2024), Bergen, Norway, June 18-21, 2024 (Vol. 3739). CEUR-WS.org.
https://ceur-ws.org/Vol-3739/abstract-23.pdf
BibTeX
Asma, Z., Hernández, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024, May). NPCS: Native Provenance Computation for SPARQL.
Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore.
https://doi.org/10.1145/3589334.3645557
BibTeX
Blomqvist, E., García-Castro, R., Hernández, D., Hitzler, P., Lindecrantz, M., & Poveda-Villalón, M. (2024).
Proceedings of the The 2nd International Workshop on Knowledge Graphs for Sustainability (KG4S 2024) colocated with the 21st Extended Semantic Web Conference (ESWC 2024) (Vol. 3753). CEUR.
https://ceur-ws.org/Vol-3753/
BibTeX
Elenter, J., Chamon, L. F. O., & Ribeiro, A. (2024, May). Near-Optimal Solutions of Constrained Learning Problems.
Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria.
https://doi.org/10.48550/arXiv.2403.11844
BibTeX
Elshani, D., Dervishaj, A., Hernández, D., Gudmundsson, K., Staab, S., & Wortmann, T. (2024). An Ontology for the Reuse and Tracking of Prefabricated Building Components.
Proceedings of the the 2nd International Workshop on Knowledge Graphs for Sustainability (KG4S 2024) Colocated with the 21st Extended Semantic Web Conference (ESWC 2024),
3753, 53–64.
https://ceur-ws.org/Vol-3753/paper5.pdf
BibTeX
Errica, F., & Niepert, M. (2024, May). Tractable Probabilistic Graph Representation Learning with Graph-Induced Sum-Product Networks.
Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria.
https://doi.org/10.48550/arXiv.2305.10544
BibTeX
Hagnberger, J., Kalimuthu, M., Musekamp, D., & Niepert, M. (2024, May). Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent PDEs. Proceedings of the AI4DifferentialEquations in Science Workshop at ICLR 2024, May 7-11, 2024, Austria.
BibTeX
Liu, A., Niepert, M., & den Broeck, G. V. (2024, May). Image Inpainting via Tractable Steering of Diffusion Models.
Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7--11, 2024, Austria.
https://doi.org/10.48550/arXiv.2401.03349
BibTeX
Qian, C., Manolache, A., Ahmed, K., Zeng, Z., den Broeck, G. V., Niepert, M., & Morris, C. (2024, May). Probabilistically Rewired Message-Passing Neural Networks.
Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7--11, 2024, Austria.
https://doi.org/10.48550/arXiv.2310.02156
BibTeX
Seifer, P., Hernández, D., Lämmel, R., & Staab, S. (2024, May). From Shapes to Shapes: Inferring SHACL Shapes for Results of SPARQL CONSTRUCT Queries.
Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore.
https://doi.org/10.1145/3589334.3645550
BibTeX
Tran, H.-C., Nguyen, D. M. H., Nguyen, M.-D., Le, N. H., & T. Nguyen, B. (2024, May). Energy Minimizing-based Token Merging for Accelerating Transformers. Proceedings of Practical ML for Low Resource Settings in Science Workshop at ICLR 2024, May 7-11, 2024, Austria.
BibTeX
Zubaria, A., Hernández, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024, May). NPCS: Native Provenance Computation for SPARQL.
Proceedings of the ACM Web Conference 2024 (WWW ’24), May13--17, 2024, Singapore, Singapore.
https://doi.org/10.1145/3589334.3645557
BibTeX
“Hosseini, A. S., & “Staab, S. (2024). Disambiguating Emotional Connotations of Words Using Contextualized Word Representations.
BibTeX
Asma, Z., Hernandez, D., Galárraga, L., Flouris, G., Fundulaki, I., & Hose, K. (2024).
Code and benchmark for NPCS, a Native Provenance Computation for SPARQL.
https://doi.org/10.18419/darus-3973
BibTeX
Chamon, L. F. O., Karimi, M. R., & Korba, A. (2024). Constrained Sampling with Primal-Dual Langevin Monte Carlo.
In Proceedings of the 38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024).
https://doi.org/10.48550/arXiv.2411.00568
BibTeX
Crum, E., Santis, A. D., Ovide, M., Pan, J., Pisu, A., Lazzari, N., & Rudolph, S. (2024). Enriching Ontologies with Disjointness Axioms using Large Language Models.
International Semantic Web Conference 2024.
https://doi.org/10.48550/arXiv.2410.03235
BibTeX
Das, A., Fathallah, N., & Obretincheva, N. (2024). Navigating Nulls, Numbers and Numerous Entities: Robust Knowledge Base Construction from Large Language Models. In Knowledge Base Construction from Pre-trained Language Models Challenge Workshop, ISWC′24.
BibTeX
Diaz Ochoa, J. G., Mustafa, F. E., Weil, F., Wang, Y., Kama, K., & Knott, M. (2024). The aluminum standard: using generative Artificial Intelligence tools to synthesize and annotate non-structured patient data.
BMC Medical Informatics and Decision Making,
24, Article 1.
https://doi.org/10.1186/s12911-024-02825-4
BibTeX
Ding, Z., Cai, H., Wu, J., Ma, Y., Liao, R., Xiong, B., & Tresp, V. (2024). zrLLM: Zero-Shot Relational Learning on Temporal Knowledge Graphs with Large Language Models.
Annual Conference of the North American Chapter of the Association for Computational Linguistics.
https://arxiv.org/abs/2311.10112
BibTeX
Ding, Z., Wu, J., Wu, J., Xia, Y., Xiong, B., & Tresp, V. (2024). Temporal Fact Reasoning over Hyper-Relational Knowledge Graphs. In Y. Al-Onaizan, M. Bansal, & Y.-N. Chen (Eds.),
Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, Florida, USA, November 12-16, 2024 (pp. 355–373). Association for Computational Linguistics.
https://aclanthology.org/2024.findings-emnlp.20
BibTeX
Fathallah, N., Bhole, M., & Staab, S. (2024). Empowering the Deaf and Hard of Hearing Community: Improving Video Captions with Large Language Models. In In Proceedings of the 11th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion.
BibTeX
Fathallah, N., Das, A., De Giorgis, G., Poltronieri, A., Haase, P., & Kovriguina, L. (2024). NeOn-GPT: A Large Language Model-Powered Pipeline for Ontology Learning.
Special Track on Large Language Models for Knowledge Engineering, Extended Semantic Web Conference, 2024. (ESWC 2024).
https://doi.org/10.5281/ZENODO.11221930
BibTeX
Fathallah, N., Staab, S., & Algergawy, A. (2024). LLMs4Life: Large language models for ontology learning in life sciences. In In Proceedings of the ELMKE Workshop on Evaluation of Language Models in Knowledge Engineering co-located with EKAW-24 (24th International Conference on Knowledge Engineering and Knowledge Management).
BibTeX
Hagnberger, J., Kalimuthu, M., Musekamp, D., & Niepert, M. (2024). Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent Parametric Partial Differential Equations.
In Proceedings of the 41st International Conference on Machine Learning (ICML 2024).
https://arxiv.org/abs/2406.03919
BibTeX
BibTeX
BibTeX
Jalali Farahani, F., Hanke, S., Dima, C., Heiberger, R. H., & Staab, S. (2024). Who is targeted? Detecting social group mentions in online political discussions.
Companion Publication of the 16th ACM Web Science Conference, 24–25.
https://doi.org/10.1145/3630744.3658412
BibTeX
Liu, X., Liu, A., den Broeck, G. V., & Liang, Y. (2024). A Tractable Inference Perspective of Offline RL.
In Proceedings of the 38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024).
https://doi.org/10.48550/arXiv.2311.00094
BibTeX
BibTeX
BibTeX
Musekamp, D., Kalimuthu, M., Holzmüller, D., Takamoto, M., & Niepert, M. (2024). Active Learning for Neural PDE Solvers.
NeurIPS 2024 Workshop on Data-Driven and Differentiable Simulations, Surrogates, and Solvers.
https://openreview.net/forum?id=LD63WlGRQQ
BibTeX
Nguyen, D. M. H., Le, A. T., Nguyen, T. Q., Diep, N. T., Nguyen, T., Duong-Tran, D., Peters, J., Shen, L., Niepert, M., & Sonntag, D. (2024). Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model.
Proceedings of Machine Learning Research.
https://arxiv.org/abs/2407.04489
BibTeX
Nguyen, D. M. H., Lukashina, N., Nguyen, T., Le, A. T., Nguyen, T., Ho, N., Peters, J., Sonntag, D., Zaverkin, V., & Niepert, M. (2024). Structure-Aware E(3)-Invariant Molecular Conformer Aggregation Networks.
In Proceedings of the 41st International Conference on Machine Learning (ICML 2024).
https://arxiv.org/abs/2402.01975
BibTeX
Pan, J., Nayyeri, M., Li, Y., & Staab, S. (2024). HGE: Embedding Temporal Knowledge Graphs in a Product Space of Heterogeneous Geometric Subspaces. Thirty-Eighth Conference on Artificial Intelligence, AAAI, 2024, Vancouver, Canada, February 22 – February 25, 2024,.
BibTeX
Peng, K., Wen, D., Yang, K., Luo, A., Chen, Y., Fu, J., Sarfraz, M. S., Roitberg, A., & Stiefelhagen, R. (2024). Advancing Open-Set Domain Generalization Using Evidential Bi-Level Hardest Domain Scheduler.
In Proceedings of the 38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024).
https://doi.org/10.48550/arXiv.2409.17555
BibTeX
Peng, K., Yin, C., Zheng, J., Liu, R., Schneider, D., Zhang, J., Yang, K., Sarfraz, M. S., Stiefelhagen, R., & Roitberg, A. (2024). Navigating Open Set Scenarios for Skeleton-based Action Recognition.
The 38th Annual AAAI Conference on Artificial Intelligence.
https://arxiv.org/abs/2312.06330
BibTeX
Potyka, N., Zhu, Y., He, Y., Kharlamov, E., & Staab, S. (2024). Robust Knowledge Extraction from Large Language Models using Social Choice Theory.
In Proceedings of the 23rd International Conference on Autonomous Agents and Multi-Agent Systems.
https://arxiv.org/abs/2312.14877
BibTeX
Qian, C., Manolache, A., Morris, C., & Niepert, M. (2024). Probabilistic Graph Rewiring via Virtual Nodes.
In Proceedings of the 38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024).
https://doi.org/10.48550/arXiv.2405.17311
BibTeX
Schwindt, S., Meisinger, L., Negreiros, B., Schneider, T., & Nowak, W. (2024). Transfer learning achieves high recall for object classification in fluvial environments with limited data.
Geomorphology,
455, 109185.
https://doi.org/10.1016/j.geomorph.2024.109185
BibTeX
BibTeX
BibTeX
Tan, Y., Lv, H., Zhou, Z., Guo, W., Xiong, B., Liu, W., Chen, C., Wang, S., & Yang, C. (2024). Logical Relation Modeling and Mining in Hyperbolic Space for Recommendation.
The 40th IEEE International Conference on Data Engineering.
http://www.cs.emory.edu/~jyang71/files/logirec.pdf
BibTeX