Publications

Machine Learning for Simulation Science

This page will be updated soon! Please visit it again in the future to read the MLS publications.

MLS Publications

  1. 2024

    1. Nguyen, D. M. H., Le, A. T., Nguyen, T. Q., Diep, N. T., Nguyen, T., Duong-Tran, D., Peters, J., Shen, L., Niepert, M., & Sonntag, D. (2024). Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model. Proceedings of Machine Learning Research. https://arxiv.org/abs/2407.04489
    2. Tran, H.-C., Nguyen, D. M. H., Nguyen, M.-D., Le, N. H., & T. Nguyen, B. (2024, May). Energy Minimizing-based Token Merging for Accelerating Transformers. Proceedings of Practical ML for Low Resource Settings in Science Workshop at ICLR 2024, May 7-11, 2024, Austria.
    3. Zaverkin, V., Holzmüller, D., Christiansen, H., Errica, F., Alesiani, F., Takamoto, M., Niepert, M., & Kästner, J. (2024). Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials. Npj Comput. Mater., 10(1), Article 1. https://doi.org/10.1038/s41524-024-01254-1
    4. Zaverkin, V., Alesiani, F., Maruyama, T., Errica, F., Christiansen, H., Takamoto, M., Weber, N., & Niepert, M. (2024). Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing. In Proceedings of the 38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024). https://doi.org/10.48550/arXiv.2405.14253
    5. Hagnberger, J., Kalimuthu, M., Musekamp, D., & Niepert, M. (2024, May). Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent PDEs. Proceedings of the AI4DifferentialEquations in Science Workshop at ICLR 2024, May 7-11, 2024, Austria.
    6. Qian, C., Manolache, A., Morris, C., & Niepert, M. (2024). Probabilistic Graph Rewiring via Virtual Nodes. In Proceedings of the 38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024). https://doi.org/10.48550/arXiv.2405.17311
    7. Torres, E., & Niepert, M. (2024). Survey: Adaptive Physics-informed Neural Networks. Neurips 2024 Workshop Foundation Models for Science: Progress, Opportunities, and Challenges. https://openreview.net/forum?id=bYP6YB84Pq
    8. Manolache, A., Tantaru, D., & Niepert, M. (2024). MolMix: A Simple Yet Effective Baseline for Multimodal Molecular Representation Learning. https://doi.org/10.48550/arXiv.2410.07981
    9. Musekamp, D., Kalimuthu, M., Holzmüller, D., Takamoto, M., & Niepert, M. (2024). Active Learning for Neural PDE Solvers. NeurIPS 2024 Workshop on Data-Driven and Differentiable Simulations, Surrogates, and Solvers. https://openreview.net/forum?id=LD63WlGRQQ
    10. Wang, Z., Cai, S., Mu, Z., Lin, H., Zhang, C., Liu, X., Li, Q., Liu, A., Ma, X., & Liang, Y. (2024). OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents. In Proceedings of the 38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024). https://doi.org/10.48550/arXiv.2407.00114
    11. Serra, G., & Niepert, M. (2024). L2XGNN: Learning to Explain Graph Neural Networks. Machine Learning Journal. https://arxiv.org/abs/2209.14402
    12. Qian, C., Manolache, A., Ahmed, K., Zeng, Z., den Broeck, G. V., Niepert, M., & Morris, C. (2024, May). Probabilistically Rewired Message-Passing Neural Networks. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7--11, 2024, Austria. https://doi.org/10.48550/arXiv.2310.02156
    13. Liu, A., Niepert, M., & den Broeck, G. V. (2024, May). Image Inpainting via Tractable Steering of Diffusion Models. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2401.03349
    14. Errica, F., & Niepert, M. (2024, May). Tractable Probabilistic Graph Representation Learning with Graph-Induced Sum-Product Networks. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2305.10544
    15. Elenter, J., Chamon, L. F. O., & Ribeiro, A. (2024, May). Near-Optimal Solutions of Constrained Learning Problems. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7-11, 2024, Austria. https://doi.org/10.48550/arXiv.2403.11844
    16. Liu, X., Liu, A., den Broeck, G. V., & Liang, Y. (2024). A Tractable Inference Perspective of Offline RL. In Proceedings of the 38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024). https://doi.org/10.48550/arXiv.2311.00094
    17. Hagnberger, J., Kalimuthu, M., Musekamp, D., & Niepert, M. (2024). Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent Parametric Partial Differential Equations. In Proceedings of the 41st International Conference on Machine Learning (ICML 2024). https://arxiv.org/abs/2406.03919
    18. Nguyen, D. M. H., Lukashina, N., Nguyen, T., Le, A. T., Nguyen, T., Ho, N., Peters, J., Sonntag, D., Zaverkin, V., & Niepert, M. (2024). Structure-Aware E(3)-Invariant Molecular Conformer Aggregation Networks. In Proceedings of the 41st International Conference on Machine Learning (ICML 2024). https://arxiv.org/abs/2402.01975
    19. Chamon, L. F. O., Karimi, M. R., & Korba, A. (2024). Constrained Sampling with Primal-Dual Langevin Monte Carlo. In Proceedings of the 38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024). https://doi.org/10.48550/arXiv.2411.00568
    20. Tran, H.-C., Nguyen, D. M. H., Nguyen, D. M., Nguyen, T.-T., Le, N., Xie, P., Sonntag, D., Zou, J. Y., Nguyen, B. T., & Niepert, M. (2024). Accelerating Transformers with Spectrum-Preserving Token Merging. In Proceedings of the 38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024). https://doi.org/10.48550/arXiv.2405.16148
  2. 2023

    1. Qian, C., Manolache, A., Ahmed, K., Zeng, Z., den Broeck, G. V., Niepert, M., & Morris, C. (2023). Probabilistic Task-Adaptive Graph Rewiring. ICML 2023 Workshop on Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators. https://openreview.net/forum?id=YsHKrMPHE1
    2. Liu, A., Niepert, M., & den Broeck, G. V. (2023, May). Image Inpainting via Tractable Steering of Diffusion Models. Proceedings of the International Conference on Learning Representations(ICLR 2024), May 7--11, 2024, Austria. https://doi.org/10.48550/arXiv.2401.03349
  3. 2022

    1. Manolache, A., Brad, F., Barbalau, A., Ionescu, R. T., & Popescu, M. (2022). VeriDark: A Large-Scale Benchmark for Authorship Verification on the Dark Web. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), Advances in Neural Information Processing Systems (Vol. 35, pp. 15574--15588). Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2022/file/64008fa30cba9b4d1ab1bd3bd3d57d61-Paper-Datasets_and_Benchmarks.pdf
    2. Dragoi, M., Burceanu, E., Haller, E., Manolache, A., & Brad, F. (2022). AnoShift: A Distribution Shift Benchmark for Unsupervised Anomaly Detection. Thirty-Sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track. https://openreview.net/forum?id=rbrouCKPiej
    3. Brad, F., Manolache, A., Burceanu, E., Barbalau, A., Ionescu, R. T., & Popescu, M. (2022). Rethinking the Authorship Verification Experimental Setups. Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, 5634--5643. https://doi.org/10.18653/v1/2022.emnlp-main.380
  4. 2021

    1. Miolane, N., Caorsi, M., Lupo, U., Guerard, M., Guigui, N., Mathe, J., Cabanes, Y., Reise, W., Davies, T., Leitão, A., Mohapatra, S., Utpala, S., Shailja, S., Corso, G., Liu, G., Iuricich, F., Manolache, A., Nistor, M., Bejan, M., … Long, Y. (2021). ICLR 2021 Challenge for Computational Geometry & Topology: Design and Results.
    2. Manolache, A., Brad, F., & Burceanu, E. (2021). DATE: Detecting Anomalies in Text via Self-Supervision of Transformers. Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 267--277. https://doi.org/10.18653/v1/2021.naacl-main.25
To the top of the page